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Abstract
In this paper, we extend the Bardos–Golse–Levermore program (Bardos et al
1993 Commun. Pure Appl. Math. 46 667–753) to prove that a local weak
solution to the d-dimensional incompressible Navier–Stokes equations (d⩾ 2)
can be constructed by taking the hydrodynamic limit of a discrete-velocity
Boltzmann equation with a simplified Bhatnagar–Gross–Krook collision oper-
ator. Moreover, in the case when the dimension is d= 2,3, we characterise
the combinations of finitely many particle velocities and probabilities that
lead to the incompressible Navier–Stokes equations in the hydrodynamic limit.
Numerical computations conducted in two-dimensional indicate that in the case
of the simplest velocity lattice (D2Q9), the rate with which this hydrodynamic
limit is achieved is of order O(ε2), where ε→ 0 is the Knudsen number. For
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the future investigations, it is worth considering if the hydrodynamic limit of
the discrete-velocity Boltzmann equation can be also rigorously justified in the
presence of non-trivial boundary conditions.

Supplementary material for this article is available online

Keywords: incompressible Navier–Stokes equations,
discrete-velocity BGK Boltzmann equation, hydrodynamic limit

Mathematics Subject Classification numbers: 35Q30, 76D05, 76P05, 76M28

1. Introduction

The lattice Boltzmann method (LBM for short), originating from lattice gas automata, is a
successful and promising numerical scheme for simulating fluid flows. Different from con-
ventional schemes which are based on macroscopic continuum equations, the LBM is based
on microscopic kinetic equations. The approach of using microscopic kinetic equations has
advantages over other computational fluid dynamics methods in the sense of easy implement-
ation of boundary conditions and parallel algorithms. The underlying reason for the effect-
iveness of the LBM is because of the fact that macroscopic fluid phenomena are collective
behaviours of microscopic interactions between particles. The LBM is characterised by the
numerical implementation of the lattice Boltzmann equation (LBE for short)

fi (x+ ci∆x, t+∆t) = fi (x, t)+Ωi (x, t) , i = 0,1, . . .,M, (1)

where M represents the number of non-zero particle velocities that we want to consider, ci
represents the ith local particle velocity, fi represents the particle velocity distribution function
along ci and Ωi represents the collision operator which characterises the rate of change of fi
resulting from collisions. There are many different choices for the collision operator Ωi in (1).
Among which, the one that is most commonly used for Navier–Stokes simulations is the lattice
Bhatnagar–Gross–Krook (BGK) collision operator [5]

Ωi ( f) =
∆t
τR

(
fi,eq − fi

)
, fi,eq = wi %

(
1+ 3ci ·U+

9
2
(ci ·U)2 −

3
2
|U|2

)
(2)

where τR is the relaxation time, wi represents certain weight for velocity ci,

%=
∑
i

fi and %U=
∑
i

ci fi.

In particular, % is the macroscopic fluid density and U is the macroscopic fluid velocity. The
LBE (1) with collision operator (2) is usually referred to the ‘lattice BGKBoltzmann equation’,
see e.g. [26]. Throughout this paper, we use d ∈ N to denote the space dimension and we work
with the case where the dimension d⩾ 2. The fi,eq term in the lattice BGK collision operator (2)
is derived from the expansion of the Maxwell–Boltzmann equilibrium distribution

Mf (x,v, t) =
%

(2πθ)d/2
exp

(
−|v−U|2

2θ

)
(3)

2
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with respect to the velocity variable v in Hermite polynomials up to the third moment, i.e. poly-
nomials in v of power 2; see e.g. [16, chapter 3]. In the standard BGK Boltzmann equation,
the factor θ in (3) is the macroscopic fluid temperature defined by

%U2 + d%θ =
ˆ
Rd
f(x,v, t) |v|2 dv.

In addition, the fi,eq term in (2) is obtained under the isothermal assumption that θ= 1.
It is well-known that the Navier–Stokes equations can be derived formally from the LBE (1)

by the Taylor expansion and the Chapman–Enskog expansion, see, e.g. [8, 18, 30]. This is
the mathematical foundation for the use of the lattice Boltzmann equation (1) to model fluid
dynamics. Lallemand et al [18] provided a comprehensive overview of the LBM and of the
mathematical theory behind this method. Simonis and Krause [28] introduced the concept of
‘limit consistency’ to formally prove the consistency of the LBM schemes based on an analysis
of discretisations satisfying certain limiting properties. Motivated by the Taylor expansion,
Guo et al [12] introduced the ‘unified preserving property’ to consistent numerical schemes
for the LBE, so that the asymptotic orders of kinetic schemes can be assessed by employing
the modified equation approach and Chapman–Enskog analysis. Kummer and Simonis [17]
proved the nonuniqueness of solutions to lattice Boltzmann formulations obtained with multi-
step finite difference schemes, which indicates the existence of equivalence classes, defined
by generalised matrix similarity, for moment matrices used in defining a lattice Boltzmann
scheme. The convergence of the LBM to Navier–Stokes flows on periodic and bounded
domains was given by Junk and Yang [14]. Wissocq and Sagaut [30] conducted a detailed
exploration of numerical errors that arise in the implementation of the LBE with an acoustic
scaling, by first studying the hydrodynamic limit in the discrete setting and then investigating
the numerical consistency with respect to the compressible Navier–Stokes system. Overall,
most of the results on the LBM are only formal and, from the perspective of mathematical
analysis, are not rigorous since not only it is not known how (1) relates to the discretisa-
tion of the Navier–Stokes equations, but also the justification of how the continuous coun-
terpart of (1) relates to the Navier–Stokes equations is unclear. In order to justify the rela-
tion between the continuous counterpart of (1) and the Navier–Stokes equations in the most
rigorous way, one should take into account of the Knudsen number for the continuous coun-
terpart of LBE and investigate its hydrodynamic limit as the Knudsen number converges to
zero.

The study of the hydrodynamic limit from the Boltzmann equation was initiated by the
work of Bardos et al [4], where they derived Leray solutions to the incompressible Navier–
Stokes equations fromDiPerna’s–Lions’ renormalised solutions [9] of the Boltzmann equation
with Grad’s cutoff kernel. Since then, the hydrodynamic limit of the Boltzmann equation has
become one of the major research topics in fluid mechanics, even until today. Along with the
philosophy of Bardos et al [4], BGL for short, many significant improvements were established
subsequently. For example, Lions and Masmoudi [21] extended the work of Bardos et al [4]
to a more general time-continuous case. Later on, Golse and Saint-Raymond [10] proved the
convergence of DiPerna–Lions’ renormalised solutions [9] to Leray solutions in the case for
hard cutoff potentials. Same convergence for the case of soft potentials was established by
Levermore and Masmoudi [20]. Furthermore, Arsenio [1] extended this convergence to the
case for non-cutoff potentials. Saint-Raymond [27] considered the Boltzmann equation with

3
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BGK collision operator and showed that solutions to the Boltzmann equation with BGK col-
lision operator that are fluctuations near the Maxwellian converge in hydrodynamic limit to
Leray solutions of the incompressible Navier–Stokes–Fourier equations. It should be remarked
that for all these fascinating results that are mentioned above, the solvability of the Boltzmann
equation is proved using an entropy method approach. In order to obtain solutions with bet-
ter regularity than Leray solutions in the hydrodynamic limit, Jiang et al [13] employed an
energy method approach to solve the Boltzmann equation in cases for both non-cutoff and
cutoff collision operators. They derived a global energy estimate for the Boltzmann equation
which holds when the initial data is sufficiently small. This global energy estimate guarantees
the existence of a global-in-time solution to the Boltzmann equation with Sobolev HN(N⩾ 3)
regularity in spatial variable x when the initial data is sufficiently small. Hence, by taking
the hydrodynamic limit for this family of global solutions, a global classical solution to the
incompressible Navier–Stokes–Fourier equations can be obtained provided that the initial fluid
velocity is sufficiently small.

Apart from the BGL program, another method that can rigorously justify the hydrodynamic
limit of a Boltzmann-type equation relies on Hilbert expansions where one constructs the solu-
tion f ε to the Boltzmann equation in the form of fε = µ+ ε

√
µ( f1 + εf2 + . . .+ εn−1fn+ εngε)

in which f1, f2, . . ., fn are given by solutions of the prescribed macroscopic fluid equations and
gε is the remainder term. Hence, for this approach to work, the solvability of the prescribed
fluid equations has to be established in advance. This philosophy is very different from the
BGL program, where one does not need to assume any a priori information about the macro-
scopic fluid equations. It derives the fluid equations from solutions of the Boltzmann equation,
and consequently gives solutions to the fluid equations by taking the limit. In other words, the
Hilbert expansion establishes a link between the solution of the Boltzmann equation and the
solutions of the fluid equations, provided that the fluid equations are solvable, whereas the
BGL program proves the solvability of the macroscopic fluid equations by taking limits of
suitable moments for the solution of the Boltzmann equation. However, the Hilbert expansion
is an approach that would produce an explicit convergence rate, see e.g. [22], due to the ansatz
in which fi has a coefficient εi and gε has a coefficient εn+1 in the Hilbert expansion. This
convergence rate is something that is hard to obtain from the BGL program. The purpose of
this paper is to give a rigorous justification for the hydrodynamic limit of a velocity-discretised
Boltzmann equation with simplified BGK collision operator by following the BGL program. It
should be emphasised that Junk andYong [15] studied analogous questions in two-dimensional
(2D) using an approach based on the Hilbert expansion. Comparing to what they established,
our work develops a more comprehensive theory applicable to different spatial dimensions and
to more general lattice structures. More significantly, our work also presents a detailed proof
of the local well-posedness of the velocity-discretised Boltzmann equation, whereas in [15]
this aspect was skipped.

Next, we introduce our model, i.e. the discrete-velocity BGK (DVBGK for short)
Boltzmann equation, in an explicit way. We shall start by introducing the lattice structure
with which the macroscopic fluid equations can be derived in hydrodynamic limit. Let n ∈ N
where n denotes the number of non-zero velocities that we want to consider in a lattice struc-
ture. Let V := {v0 = 0,v1, . . .,vn} ⊂ Rd be a set of velocities for particles such that vi ̸= vj for
any i, j ∈ {0,1, . . .,n} satisfying i ̸= j. Let w= (w0,w1, . . .,wn) ∈ Rn+1

+ be a weight that we are
going to impose on V where R+ := {a ∈ R

∣∣ a> 0}. We call the pair (V,w) a lattice.

4



Nonlinearity 38 (2025) 055014 Z Gu et al

Definition 1. We call a lattice (V,w) to be an isotropic lattice associated with the speed of
sound cs > 0 if they satisfy

n∑
i=0

wi = 1,

n∑
i=0

wi vi,α = 0,

n∑
i=0

wi vi,αvi,β = c2sδαβ ,

n∑
i=0

wi vi,αvi,βvi,γ = 0,

n∑
i=0

wi vi,αvi,βvi,γvi,ζ = c4s (δαβδγζ + δαγδβζ + δαζδβγ) ,

(4)

where the notation vi,η (1⩽ η ⩽ d) represents the η-component of particle velocity vi.

The notion of an ‘isotropic lattice’ follows from the standard terminology describing lattice
symmetries in the classical lattice Boltzmann models, see, e.g. [31]. Let ε> 0 be the Knudsen
number and (V,w) be an isotropic lattice. We define the DVBGK Boltzmann equation on
(V,w) in Rd to be the vector system

ε∂tg
ε + v ·∇xg

ε =
1
εν

(
gεeq − gε

)
, gε

∣∣
t=0

= g0,ε, (5)

where ν denotes the relaxation time,

gε := (gε0,g
ε
1, . . .,g

ε
n) , gεeq :=

(
gε0,eq,g

ε
1,eq, . . .,g

ε
n,eq

)
, g0,ε :=

(
g0,ε0 ,g0,ε1 , . . .,g0,εn

)
and

v := (v0,v1, . . .,vn)
T
, ∇xg

ε = (∇xg
ε
0,∇xg

ε
1, . . .,∇xg

ε
n) .

For each i which takes integer value from 0 to n, the vi in velocity matrix v is the ith velocity
defined in V and the ith component of the DVBGK Boltzmann equation (5) reads as

ε∂tg
ε
i + vi ·∇xg

ε
i =

1
εν

(
gεi,eq − gεi

)
, gεi

∣∣
t=0

= g0,εi ,

where

gεi,eq := ρε +
vi · uε

c2s
+

ε

2c4s

d∑
α,β=1

uεαu
ε
β

(
vi,αvi,β − c2sδαβ

)
(6)

with

ρε :=
n∑

i=0

wi g
ε
i , uε :=

n∑
i=0

wi vi g
ε
i . (7)

5
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It should be emphasised that the DVBGKBoltzmann equation (5), which is only discretised in
particle velocity, is distinct from the lattice BGKBoltzmann equation which is fully discretised
in space, time and particle velocity. Following the standard terminology, we call the numerical
implementation of the DVBGK Boltzmann equation (5) on an isotropic lattice to be the DdQn
scheme, see e.g. [16]. As an important fact, we emphasise that the summation condition (4)
implies that

ρε =
n∑

i=0

wi g
ε
i,eq, uε =

n∑
i=0

wi vi g
ε
i,eq. (8)

In order to achieve our goal, we follow the philosophy of Jiang et al [13] in using the energy
method approach to solve the Boltzmann equation, and the fundamental idea of Bardos et al
[4] in taking the hydrodynamic limits. Apart from the rigorous analysis which constructs a
local solution to the incompressible Navier–Stokes equations from the DVBGK Boltzmann
equation, our work also contains a numerical part, namely, we conduct computations in 2D to
provide information about the rate with which the hydrodynamic limit is achieved when the
Knudsen number tends to zero. More specifically, we work with the D2Q9 scheme to solve
the DVBGK Boltzmann equation (5) by considering 9 weights

wi =



4
9

for i = 0,

1
9

for i = 1,2,3,4,

1
36

for i = 5,6,7,8

(9)

and 9 velocities
v0 = (0,0) ,

v1 = (1,0) , v2 = (0,1) , v3 = (−1,0) , v4 = (0,−1) ,

v5 = (1,1) , v6 = (−1,1) , v7 = (−1,−1) , v8 = (1,−1)

(10)

with sound speed cs = 1√
3
.

1.1. Rigorous justification of the hydrodynamic limit: analysis part

In order to establish the solvability of the DVBGK Boltzmann equation in a simple way, we
follow the philosophy in [11] to do cutoff to equation (5) in Fourier space, i.e. we work with
the approximate equation of (5) instead of (5) itself. We shall see by the end of section 3 that
this consideration would not affect the incompressible Navier–Stokes limit. To summarise the
underlying reason in a philosophical sentence, the hydrodynamic limit is not sensitive to small
changes on the form of the Boltzmann equation.

Suppose that (V,w) is an isotropic lattice. We next define the approximate equation of (5)
on (V,w). Let ε ∈ (0,1). For h ∈ L2(Rd), we define that

Λε (h) :=
ˆ
Rd

1|ξ|< 1
ε
(ξ) ĥ(ξ)e2π i x·ξ dξ, ĥ(ξ) :=

ˆ
Rd
h(x)e−2π i x·ξ dx, (11)

where 1|ξ|<ε−1 represents the indicator function for the open ball {ξ ∈ Rd
∣∣ |ξ|< ε−1}, i.e.

Λε(h) is the cutoff in Fourier space for h with respect to spatial x-variable. Since the DVBGK

6
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Boltzmann equation (5) is already discretised in velocity variable v, there is no need to do
cutoff to it in Fourier space with respect to v. Hence, we define the approximate DVBGK
Boltzmann equation to be the vector equation

ε∂tΛε (g
ε)+ v ·∇xΛε (g

ε) =
1
εν

(
Gε
eq −Λε (g

ε)
)
, Λε (g

ε)
∣∣
t=0

= Λε

(
g0,ε
)

(12)

where

Λε (g
ε) = (Λε (g

ε
0) , . . .,Λε (g

ε
n)) , Gε

eq :=
(
Gε
0,eq, . . .,Gε

n,eq

)
,

Λε

(
g0,ε
)
:=
(
Λε

(
g0,ε0

)
, . . .,Λε

(
g0,εn
))
.

For each iwhich takes integer value from 0 to n, the ith component of the approximate DVBGK
Boltzmann equation (12) reads as

ε∂tΛε (g
ε
i )+ vi ·∇xΛε (g

ε
i ) =

1
εν

(
Gε
i,eq −Λε (g

ε
i )
)
, Λε (g

ε
i )
∣∣
t=0

= Λε

(
g0,εi

)
where

Gε
i,eq := Λε (ρ

ε)+
vi ·Λε (uε)

c2s
+

ε

2c4s

d∑
α,β=1

(
vi,αvi,β − c2sδαβ

)
Λε

(
Λε (u

ε)αΛε (u
ε)β

)
,

Λε (ρ
ε) :=

n∑
i=0

wiΛε (g
ε
i ) , Λε (u

ε) :=
n∑

i=0

wi viΛε (g
ε
i )

(13)

and Λε(uε)α denotes the αth component of Λε(uε). Analogous to (8), we deduce by (4) that

Λε (ρ
ε) =

n∑
i=0

wiGε
i,eq, Λε (u

ε) =
n∑

i=0

wi viGε
i,eq. (14)

Before stating our main results, we would like to define several notations and concepts that
will repeatedly appear in this paper. For f =

(
f(v0), . . ., f(vn)

)
, h=

(
h(v0), . . .,h(vn)

)
∈ Rn+1,

we define inner products

⟨f,h⟩L2
v
:=

n∑
i=0

f(vi)h(vi) , ⟨f,h⟩L2
v,w

:=
n∑

i=0

wi f(vi)h(vi) .

For f =
(
f(x,v0), . . ., f(x,vn)

)
, h=

(
h(x,v0), . . .,h(x,vn)

)
∈ L2(Rd

x), we define inner products

⟨f,h⟩L2
xL

2
v
:=

n∑
i=0

ˆ
Rd
f(x,vi)h(x,vi) dx, ⟨f,h⟩L2

xL
2
v,w

:=
n∑

i=0

wi

ˆ
Rd
f(x,vi)h(x,vi) dx.

Let N0 := N∪{0} and τ = (τ1, τ2, . . ., τd) ∈ Nd
0. We define

|τ |s :=
d∑

j=1

τj

7
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and use the notation ∂τx to denote the differentiation ∂τ1
x1 ∂

τ2
x2 . . .∂

τd
xd . For f =(

f(x,v0), . . ., f(x,vn)
)
∈ Hη(Rd

x) with η ∈ R, we define the norm

∥f∥2Hη
x L2

v,w
:=

n∑
i=0

wi ∥f(·,vi)∥2Hη(Rd
x)
.

We setHη
x L

2
v,w to be the Sobolev spaceHη(Rd

x) equipped with norm ∥ · ∥Hη
x L2

v,w
. By the Cauchy–

Schwarz inequality, we can easily observe that the space Hη
x L

2
v,w is equivalent to the standard

Sobolev space Hη(Rd
x). Regarding the approximate equation (12), we establish its local well-

posedness.

Lemma 2. Suppose that (V,w) is an isotropic lattice. Let ε> 0 be fixed and m ∈ N with
m> d. Then, for any g0,ε ∈ Hm

x L
2
v,w, there exist constants T0 = T0(g0,ε,V,cs,m,d)> 0 and

c0 = c0(V,cs,m,d)> 0, such that the approximate DVBGKBoltzmann equation (12) on (V,w)
with initial data Λε(g0,ε) is locally well-posed. In particular, the unique local solution

gε ∈ L∞
(
[0,T0] ;H

m
x L

2
v,w

)
satisfies gε

∣∣
t=0

= Λε(g0,ε), gε = Λε(gε) and the local energy inequality

sup
t∈[0,T0]

∥gε (t)∥2Hm
x L

2
v,w

+
1
ε2

ˆ T0

0
∥Gε

eq (s)− gε (s)∥2Hm
x L

2
v,w

ds

⩽

(
ν+ ν2

)
∥Λε

(
g0,ε
)
∥2Hm

x L
2
v,w

ν− c0T0∥Λε (g0,ε)∥2Hm
x L

2
v,w

− ν∥Λε

(
g0,ε
)
∥2Hm

x L
2
v,w
.

(15)

The merit of working with the approximate equation (12) instead of the original DVBGK
Boltzmann equation (5) is that the existence of a local solution to (12) can be constructed eas-
ily using the classical Picard’s method. Since we are considering the case where m> d, the
Sobolev space Hm(Rd

x) is indeed a Banach algebra. As a result, the local energy estimate (15)
can be derived easily by the traditional energy method. To show the existence of a local solu-
tion, for each 0⩽ i ⩽ n, we consider a sequence of functions {fεi,j(t)}j∈N0 that is constructed
inductively by

fεi,j+1 (t) := fεi,0 −
1
ε

ˆ t

0
vi ·∇xf

ε
i,j (s) ds+

1
ε2ν

ˆ t

0
Gε
i,eq,j (s)− fεi,j (s) ds

for j ⩾ 0 where fεi,0 = Λε(gεi,0),

Gε
i,eq,j := Λε

(
ρεj
)
+
vi ·Λε

(
uεj
)

c2s
+

ε

2c4s

d∑
α,β=1

(
vi,αvi,β − c2sδαβ

)
Λε

(
Λε

(
uεj,α
)
Λε

(
uεj,β
))
,

Λε

(
ρεj
)
:=

n∑
i=0

wi f
ε
i,j, Λε

(
uεj
)
:=

n∑
i=0

wi vi f
ε
i,j.

Since fεi,j has compact support in Fourier space, by the Bernstein-type lemma (see e.g. [3,
lemma 2.1]), we can control the Hm

x norm of vi ·∇xfεi,j by the Hm
x norm of fεi,j. Although in

this case ε with negative power would appear in the coefficient, this is harmless. Thus, we can
construct a local solution using the simple Picard’s iteration. Let fεj := (fεi,j)0⩽i⩽n.We can prove

8
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by induction that the sequence {fεj (t)}j∈N0 is Cauchy in L∞([0,Tε∗];H
m
x L

2
v,w)with some Tε∗ > 0

that depends on ε. The existence of a local solution can then be concluded by the contraction
mapping theorem and the Banach fixed point theorem. Since the existence time T0 in the local
energy inequality (15) is independent of ε, we can extend the local solution up to time T0.
Moreover, by analogous energy method, the uniqueness for the local solution and continuity
with respect to initial data can be argued by deriving the energy inequality for the difference
between two local solutions that are well-defined on the same time interval. This completes
the proof of lemma 2.

Having the local solvability for the approximate equation (12), we can then follow the idea
of Bardos et al [4] to take the hydrodynamic limit. The main convergence theorem of this paper
reads as follows.

Theorem 3. Let m ∈ N with m> d. For any (ρ0,u0) ∈ Hm(Rd
x) and 0< ε < 1, we consider the

initial data g0,ε = (g0,ε0 ,g0,ε1 , . . .,g0,εn ) with

g0,εi = Λε (ρ0)+
vi
c2s

·Λε (u0) , ∀ 0⩽ i ⩽ n (16)

to the approximate DVBGK Boltzmann equation (12) where Λε is the cutoff in Fourier space
operator defined by (11). Suppose that {εn}n∈N ⊂ (0,1) is a sequence which converges to 0
as n→∞. For each n ∈ N, let gεn be the unique local solution to the approximate DVBGK
Boltzmann equation (12) established in lemma 2 corresponding to the initial data g0,εn . Then,
there exist a subsequence {εn(k)}k∈N and (ρ,u) ∈ L∞([0,T0];Hm(Rd

x)) such that

g
εn(k)
i

∗
⇀ρ+

vi · u
c2s

as k→∞

in the weak-∗ topology σ
(
L∞([0,T0];Hm(Rd

x));L
1([0,T0];H−m(Rd

x))
)
. Moreover, u is a local

weak solution to the Cauchy problem of the incompressible Navier–Stokes equations
∂tu− c2sν∆xu+∇x · (u⊗ u)+∇xp= 0,

∇x · u= 0,

u(x,0) = P(u0)
(17)

where P denotes the Helmholtz projection for L2(Rd
x). Furthermore, u ∈ C([0,T0];Hm−1(Rd

x))
satisfies the local energy inequality

∥u∥L∞([0,T0];Hm(Rd
x))

≲ ∥ρ0∥Hm(Rd
x)
+ ∥u0∥Hm(Rd

x)
.

The formal derivation of the incompressible Navier–Stokes equations is somehow standard.
By taking the inner product of the approximate equation (12) with 1 and v in the L2

v,w sense,
we obtain that 

∂tρ
ε +

1
ε
∇x · uε = 0,

∂tu
ε +

n∑
i=0

1
ε
wi∇x · (vi ⊗ vi g

ε
i ) = 0.

(18)

It can be easily observed that the divergence free condition comes from the first equation of (18)
in hydrodynamic limit. To derive the main part of the Navier–Stokes equations, which results

9
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from the second equation of (18), more effort is needed. For each 0⩽ i ⩽ n, we have to use
the matrix Ai := (vi ⊗ vi)− c2s I to rewrite

∇x · (vi ⊗ vi g
ε
i ) =∇x ·

(
Ai
(
gεi −Gε

i,eq

))
+∇x ·

(
AiGε

i,eq

)
+ c2s∇xg

ε
i .

Then, by making use of the isotropic summation condition (4), we can show that the transport
term uε ·∇xuε comes from the summation of ε−1wi∇x · (AiGε

i,eq) in i whereas the diffusion
term ∆xuε comes from the summation of ε−1wi∇x ·

(
Ai (gεi −Gε

i,eq)
)
in i. Hence, the second

equation of (18) can be rewritten in the form of

∂tu
ε − c2sν∆xu

ε +∇x · (uε ⊗ uε)− c2sν∇x divu
ε +

c2s
ε
∇xρ

ε +Rε = 0 (19)

where Rε is a remainder term which converges to zero in the sense of distributions in the
hydrodynamic limit. The term ∇xρ

ε in (19) is a bad term with high frequency, its coefficient
is of order ε−1 which blows up as ε→ 0. We have to get rid of this effect from (19) before we
take the limit ε→ 0. In order to do so, we apply the L2 Helmholtz projection P to both sides
of (19). The gradient term ε−1∇xρ

ε is thus eliminated. Without terms having high frequency,
we can then show that P(uε) is equi-continuous in time t by an energy argument. Suppressing
subsequences, the strong convergence of P(uε) to u as ε→ 0 can be concluded by the Arzelà–
Ascoli theorem. Finally, the convergence of uε −P(uε) to zero in the sense of distributions
is guaranteed by a compensated compactness result by Lions and Masmoudi [21]. It is worth
noting that the strong convergence of P(uε) (lemma 15) guarantees that the initial data for the
macroscopic fluid velocity is only determined by the first moment of g0,ε, i.e.

∑n
i=0wi vi g

0,ε
i .

Hence, when we construct the microscopic initial data for the DVBGK Boltzmann system
from the macroscopic fluid initial data, cf formula (16), it is not necessary to take into account
the nonlinear effect in gεi,eq since the matrix vi ⊗ vi − c2s I is orthogonal to 1 and vi in the L2

v,w
sense.

As the end of the analysis part, we give characterisations to isotropic lattices in the case
when d= 2,3 and cs = 3−

1
2 . Since the combination of an isotropic lattice and speed of sound is

scale invariant (see remark 26), we have to restrict the size of every component of each particle
velocity in order to give a characterisation. The key idea for characterising 2D and 3D isotropic
lattices is as follows. If we require the size condition that every component of each particle
velocity takes value in the interval [−1,1], then every component of each particle velocity can
only take value in the set {−1,0,1}. Moreover, we note that for 1⩽ i ⩽ 5, the ith summation
condition in (4) is indeed the expectations of all possible products of i− 1 components of
particle velocities. The characterisations for 2D and 3D isotropic lattices (when cs = 3−

1
2 ) can

be obtained by algebraic manipulations of summation conditions in (4) in the language of
expectations. In particular, in the 2D case with cs = 3−

1
2 , we show that if we require that each

component of every particle velocity to take value in [−1,1], then the D2Q9 scheme is the
only possible isotropic lattice. In the 3D case with cs = 3−

1
2 , we have more than one possible

choice for isotropic lattices, simply because of the system is underdetermined.

1.2. Numerical investigation of the hydrodynamic limit

In order to illustrate these concepts, in particular, the hydrodynamic limit of the DVBGK
Boltzmann system, we conduct numerical simulations of system (5) for different values of ε
and compare these solutions to the solution of the Navier–Stokes system (17) with the corres-
ponding macroscopic initial condition. It should be emphasised here that, since we are inter-
ested in the question of the convergence of solutions to one PDE problem, i.e. (5), to solutions

10



Nonlinearity 38 (2025) 055014 Z Gu et al

of another PDE problem, (17), as a parameter in the former is varied, we choose to rely on the
most accurate numerical approach available, which is the pseudospectral method [7], rather
than the LBM. Moreover, in most cases for the LBM, the Knudsen number does not appear as
an explicit parameter in (1), and its smallness can only be implicitly guaranteed by properly
adjusting the ratio between the spatial discretisation ∆x and the temporal discretisation ∆t.
On the other hand, our numerical approach is based directly on system (5) where the Knudsen
number is explicitly present such that that a direct quantitative comparison with the solutions
of (17) is possible.

For simplicity, we focus on the 2D case (d= 2) and consider problems defined on a periodic
spatial domain (i.e. a 2D torus T2

x). Flows corresponding to two different macroscopic initial
conditions are studied, namely, the Taylor–Green vortex for which the 2D Navier–Stokes sys-
tem admits a closed-form analytic solution and its perturbed version which leads to a turbulent-
like evolution featuring repeated filamentation of vortices resulting in an enstrophy cascade. In
both cases we observe that ∥∇xu(T)−∇xuε(T)∥L2(T2

x)
=O(ε2) at some time T > 0 as ε→ 0.

This observation agrees with the convergence rate proved by Junk and Yong [15] using the
Hilbert expansion. For the BGL program, it is very hard to establish this convergence rate
rigorously, cf section 7 for a discussions of the underlying reasons.

1.3. Organisation of the paper

This article is organised as follows. Section 2 is devoted to the local well-posedness of the
approximate DVBGKBoltzmann equation (12). In section 2.1, we employ the standard energy
method to derive a local energy inequality which holds for both the approximate and the ori-
ginal DVBGKBoltzmann equation. In section 2.2, we construct a local solution to the approx-
imate equation (12) using the classical Picard’s method. In section 2.3, we consider analogous
energy argument as in section 2.1 to show the uniqueness and continuity with respect to ini-
tial data. Section 3 is devoted to the formal derivation of the incompressible Navier–Stokes
equations. In particular, the transport term uε ·∇xuε is derived in section 3.1 and the diffusion
term is derived in section 3.2. In section 4, we take the hydrodynamic limit and prove the con-
vergence of the unique local solution for the approximate equation (12) to a local weak solution
for the incompressible Navier–Stokes equations (17). In section 4.1, we apply the Helmholtz
decomposition P to get rid of the gradient term that has high frequency in the formal equations
derived in section 3. We also prove the strong convergence P(uε) to u here. In section 4.2,
we collect all the convergence results established to give a proof to theorem 3. In section 5,
we give characterisations to 2D and 3D isotropic lattices when cs = 3−

1
2 and a size condition

is imposed on particle velocities. In section 5.1, we rewrite the summation conditions in (4)
using expectations in the probability setting. Section 5.2 is devoted to the characterisations
of 2D and 3D isotropic lattices. In section 6, we present the numerical implementation of
the D2Q9 scheme in the 2D case to provide numerical evidence that justify the convergence
behaviour we have proved in the analysis part.

Throughout this paper, the notation A≲ B will mean that there exists a constant c, which is
independent of ε and ν, such that A⩽ cB.

2. Local solvability of the approximate DVBGK Boltzmann equation

First of all, we would like to highlight a simple tool that is crucial for norm estimations of
nonlinear terms in this paper.

Proposition 4. For m ∈ N such that m> d, the Sobolev space Hm(Rd
x) is a Banach algebra.

11
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Proof. For f,g ∈ Hm(Rd
x), we can easily observe by the Cauchy–Schwarz inequality that

∥fg∥2
Hm(Rd

x)
⩽

∑
τ∈Nd

0, |τ |s⩽m

(|τ |s + 1)d
∑

σ∈Nd
0,σ⩽τ

∥∂σx f∂τ−σ
x g∥2

L2(Rd
x)

where the notation σ ⩽ τ means that σi ⩽ τi for all 1⩽ i ⩽ d. Since m⩾ d+ 1, we note that
either |σ|s or |τ −σ|s = |τ |s − |σ|s must be less than or equal to m− [ d2 ]− 1 where [ d2 ] denotes
the largest integer less than or equal to d

2 . Without loss of generality, we may assume that

|σ|s ⩽ m− [ d2 ]− 1. Then, by the continuous Sobolev embedding H[ d2 ]+1(Rd
x) ↪→ L∞(Rd

x), we
deduce that

∥∂σx f∂τ−σ
x g∥2

L2(Rd
x)
⩽ ∥∂σx f∥2L∞(Rd

x)
∥∂τ−σ

x g∥2
L2(Rd

x)

⩽ ∥f∥2
Hm(Rd

x)
∥∂τ−σ

x g∥2
L2(Rd

x)
.

Hence,

∥fg∥2
Hm(Rd

x)
⩽ ∥f∥2

Hm(Rd
x)

∑
τ∈Nd

0, |τ |s⩽m

(|τ |s + 1)d ∥g∥2
H|τ|s(Rd

x)

⩽ (m+ 1)d ∥f∥2
Hm(Rd

x)
∥g∥2

Hm(Rd
x)
·

m∑
j=0

(
j+ d− 1
d− 1

)

⩽ (m+ 1)d+1 (m+ d− 1)d−1

(d− 1)!
∥f∥2

Hm(Rd
x)
∥g∥2

Hm(Rd
x)
.

This completes the proof of proposition 4 since Hm(Rd
x) is certainly a Banach space.

Remark 5. The continuous Sobolev embedding H[ d2 ]+1(Rd
x) ↪→ L∞(Rd

x) plays an important
role in proving proposition 4. We recall that in fact, it holds more generally that Hs(Rd

x) ↪→
L∞(Rd

x) whenever s> d
2 as

∥h∥L∞(Rd
x)
⩽ ∥ĥ∥L1(Rd

x)
⩽ ∥⟨ξ ⟩−s∥L2(Rd

x)
∥⟨ξ ⟩sĥ∥L2(Rd

x)
≲ ∥h∥Hs(Rd

x)

where ⟨ξ ⟩ := (1+ |ξ|2) 1
2 and ĥ denotes the Fourier transform of h.

2.1. Local energy estimate for the DVBGK Boltzmann equation

The local energy inequality can be derived by working directly with the original DVBGK
Boltzmann equation (5).

Lemma 6. Suppose that (V,w) is an isotropic lattice. Let ε> 0 and m ∈ N satisfying m> d.
Then, for any g0,ε ∈ Hm

x L
2
v,w, there exists T0 = T0(g0,ε,V,cs,m,d)> 0 such that for any gε ∈

L∞([0,T0];Hm
x L

2
v,w) satisfying the DVBGK Boltzmann equation (5) on (V,w), the local energy

estimate

12
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∥gε (t)∥2Hm
x L

2
v,w

+
1
ε2

ˆ t

0
∥gεeq (s)− gε (s)∥2Hm

x L
2
v,w

ds

⩽

(
ν+ ν2

)
∥g0,ε∥2Hm

x L
2
v,w

ν− t ·CLE∥g0,ε∥2Hm
x L

2
v,w

− ν∥g0,ε∥2Hm
x L

2
v,w

(20)

holds for any t ∈ [0,T0] with a constant CLE = CLE(V,cs,m,d)> 0.

Proof. Let τ ∈ Nd
0 satisfying |τ |s ⩽ m. By applying ∂τx to the DVBGKBoltzmann equation (5)

and taking its inner product with ∂τx g
ε in the L2

xL
2
v,w sense, we obtain that

1
2

n∑
i=0

wi
d
dt
∥∂τx gεi ∥2L2(Rd

x)
+

1
ε2ν

n∑
i=0

wi ∥∂τx gεi,eq − ∂τx g
ε
i ∥2L2(Rd

x)

=
1
ε2ν

n∑
i=0

wi

ˆ
Rd

(
∂τx g

ε
i,eq − ∂τx g

ε
i

)
∂τx g

ε
i,eq dx.

(21)

By (7) and (8), we observe that

n∑
i=0

wi
(
gεi,eq − gεi

)
= 0,

n∑
i=0

wi vi
(
gεi,eq − gεi

)
= 0.

Hence, by substituting expression (6) for gεi,eq into the right hand side of (21), we deduce that

1
ε2ν

n∑
i=0

wi

ˆ
Rd

(
∂τx g

ε
i,eq − ∂τx g

ε
i

)
∂τx g

ε
i,eq dx

=
1

2c4sεν

n∑
i=0

d∑
α,β=1

∑
σ∈Nd

0,σ⩽τ

wi
(
vi,αvi,β − c2sδαβ

)ˆ
Rd

(
∂τx g

ε
i,eq − ∂τx g

ε
i

)
∂σx u

ε
α∂

τ−σ
x uεβ dx

⩽ `V,cs

2c4sεν

n∑
i=0

wi ∥∂τx gεi,eq − ∂τx g
ε
i ∥L2(Rd

x)

d∑
α,β=1

∑
σ∈Nd

0,σ⩽τ

∥∂σx uεα∂τ−σ
x uεβ∥L2(Rd

x)

⩽ 1
2ε2ν

n∑
i=0

wi ∥∂τx gεi,eq − ∂τx g
ε
i ∥2L2(Rd

x)
+
`2V,csd

2|τ |ds
8c8sν

d∑
α,β=1

∑
σ∈Nd

0,σ⩽τ

∥∂σx uεα∂τ−σ
x uεβ∥2L2(Rd

x)
,

(22)

where `V,cs :=
(
max
1⩽i⩽n

|vi |
)2

+ c2s . From the proof of proposition 4, we see that

∑
σ∈Nd

0,σ⩽τ

∥∂σx uεα∂τ−σ
x uεβ∥2L2(Rd

x)
⩽ ∥uεα∥2Hm(Rd

x)
∥uεβ∥2H|τ|s(Rd

x)
.

On the other hand, we observe by (7) that the estimate

∥uεα∥2Hk(Rd
x)
⩽
(

n∑
i=0

wi ∥gεi ∥Hk(Rd
x)

)2

⩽
n∑

i=0

wi ∥gεi ∥2Hk(Rd
x)

13
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holds for any 1⩽ α⩽ d and k ∈ N0. Therefore, (21) and (22) imply that

1
2
d
dt

n∑
i=0

wi ∥∂τx gεi ∥2L2(Rd
x)
+

1
2ε2ν

n∑
i=0

wi ∥∂τx gεi,eq − ∂τx g
ε
i ∥2L2(Rd

x)

⩽
`2V,csd

4|τ |ds
8c8sν

∥gε∥2Hm
x L

2
v,w
∥gε∥2

H|τ|s
x L2

v,w
.

(23)

Summing up inequality (23) over all τ ∈ Nd
0 satisfying |τ |s ⩽ m gives us

1
2
d
dt
∥gε∥2Hm

x L
2
v,w

+
1

2ε2ν
∥gεeq − gε∥2Hm

x L
2
v,w

⩽
`2V,csd

4md

8c8sν
∥gε∥4Hm

x L
2
v,w
. (24)

Applying Gronwall’s inequality (see e.g. [24, page 362]) to

d
dt
∥gε∥2Hm

x L
2
v,w

⩽
`2V,csd

4md

4c8sν
∥gε∥4Hm

x L
2
v,w
,

we deduce that

∥gε (t)∥2Hm
x L

2
v,w

⩽
ν∥g0,ε∥2Hm

x L
2
v,w

ν− t ·CLE∥g0,ε∥2Hm
x L

2
v,w

, (25)

where CLE = CLE(V,cs,m,d) := 4−1c−8
s `2V,csd

4md. Substituting inequality (25) into the
inequality

1
ε2CLE

∥gεeq − gε∥2Hm
x L

2
v,w

⩽ ∥gε∥4Hm
x L

2
v,w
,

which is another implication of inequality (24), we can further deduce that

1
ε2

ˆ t

0
∥gεeq − gε∥2Hm

x L
2
v,w

ds⩽
ν2∥g0,ε∥2Hm

x L
2
v,w

ν− t ·CLE∥g0,ε∥2Hm
x L

2
v,w

− ν∥g0,ε∥2Hm
x L

2
v.w
.

Finally, we take T0 < νC−1
LE ∥g0,ε∥

−2
Hm
x L

2
v,w
. This completes the proof of lemma 6.

Remark 7. It is easy to observe that the cutoff operator Λε commutes with the differentiation
∂x. Moreover, it holds that for any f,h ∈ L2

xL
2
v,w,

⟨Λε ( f) ,h⟩L2
xL

2
v,w

= ⟨f,Λε (h)⟩L2
xL

2
v,w

and Λε (Λε ( f)) = Λε ( f) .

Making use of these three properties of the cutoff operator Λε, we can deduce that lemma
6 also holds for the approximate DVBGK Boltzmann equation (12) defined on an isotropic
lattice (V,w), with g0,ε, gε and gεeq in inequality (20) being replaced respectively by Λε(g0,ε),
Λε(gε) and Gε

eq.
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2.2. Existence of a local solution for the approximate equation

Proof of lemma 2 (Existence). For simplicity of notations, we denote fε = (fεi )0⩽i⩽n :=
Λε(gε) and fε0 = (fεi,0)0⩽i⩽n := Λε(g0,ε), i.e.

fεi = Λε (g
ε
i ) and fεi,0 = Λε

(
g0,εi

)
, 0⩽ i ⩽ n.

Performing integration of the ith component of the approximate DVBGK Boltzmann
equation (12) for each 0⩽ i ⩽ n with respect to the time variable, we have that

fεi (t) = fεi,0 −
ˆ t

0

1
ε
(vi ·∇xf

ε
i ) ds+

ˆ t

0

1
ε2ν

(
Gε
i,eq − fεi

)
ds. (26)

Based on the integral equation (26), for each 0⩽ i ⩽ n, we define a sequence of functions
{fεi,j}j∈N0 inductively by

fεi,j+1 (t) = fεi,0 −
ˆ t

0

1
ε

(
vi ·∇xf

ε
i,j (s)

)
ds+

ˆ t

0

1
ε2ν

(
Gε
i,eq,j (s)− fεi,j (s)

)
ds (27)

for j ∈ N0 where

Gε
i,eq,j := Λε

(
ρεj
)
+
vi ·Λε

(
uεj
)

c2s
+

ε

2c4s

d∑
α,β=1

(
vi,αvi,β − c2sδαβ

)
Λε

(
Λε

(
uεj
)
α
Λε

(
uεj
)
β

)
,

Λε

(
ρεj
)
:=

n∑
i=0

wi f
ε
i,j, Λε

(
uεj
)
:=

n∑
i=0

wi vi f
ε
i,j

with Λε(uεj )α denoting the αth component of Λε(uεj ). For every j ∈ N, we set fεj := (fεi,j)0⩽i⩽n.
The key idea here is to show that the vector sequence {fεj }j∈N0 is Cauchy in L∞([0,T];Hm

x L
2
v,w)

for each 0⩽ i ⩽ n. By Minkowski’s integral inequality, for any j ∈ N and 0⩽ i ⩽ n, we have
that

∥fεi,j+1 − fεi,j∥Hm(Rd
x)
≲
ˆ t

0

1
ε
∥vi ·∇x

(
fεi,j− fεi,j−1

)
∥Hm(Rd

x)
ds

+

ˆ t

0

1
ε2ν

∥Gε
i,eq,j−Gε

i,eq,j−1∥Hm(Rd
x)
ds

+

ˆ t

0

1
ε2ν

∥fεi,j− fεi,j−1∥Hm(Rd
x)
ds.

(28)

Since the Fourier transform of fεi,j is supported within Bε−1(0) for any 0⩽ i ⩽ n and j ∈ N0,
by the Bernstein-type lemma (see [3, lemma 2.1]), we deduce that

∥vi ·∇x
(
fεi,j− fεi,j−1

)
∥Hm(Rd

x)
≲ ∥∇x

(
fεi,j− fεi,j−1

)
∥Hm(Rd

x)
≲ 1
ε
∥fεi,j− fεi,j−1∥Hm(Rd

x)
. (29)

To estimate the Hm norm of Gε
i,eq,j−Gε

i,eq,j−1, we first observe that for any j ∈ N,

∥Λε

(
ρεj
)
−Λε

(
ρεj−1

)
∥Hm(Rd

x)
+
∥∥vi · (Λε

(
uεj
)
−Λε

(
uεj−1

))∥∥
Hm(Rd

x)
≲ ∥fεj − fεj−1∥Hm

x L
2
v,w
.

(30)

15
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Since the cutoff operator Λε commutes with the differentiation ∂x, the nonlinear terms in
Gε
i,eq,j−Gε

i,eq,j−1 can be estimated by Plancherel’s identity and proposition 4, i.e. for any j ∈ N
and 1⩽ α,β ⩽ d, it holds that

∥Λε

(
Λε

(
uεj
)
α
Λε

(
uεj
)
β
−Λε

(
uεj−1

)
α
Λε

(
uεj−1

)
β

)
∥Hm(Rd

x)

⩽
∥∥(Λε

(
uεj
)
α
−Λε

(
uεj−1

)
α

)
Λε

(
uεj
)
β

∥∥
Hm(Rd

x)

+
∥∥Λε

(
uεj−1

)
α

(
Λε

(
uεj
)
β
−Λε

(
uεj−1

)
β

)∥∥
Hm(Rd

x)

≲
(
∥Λε

(
uεj
)
∥Hm(Rd

x)
+ ∥Λε

(
uεj−1

)
∥Hm(Rd

x)

)
∥Λε

(
uεj
)
−Λε

(
uεj−1

)
∥Hm(Rd

x)

≲ (∥fεj ∥Hm
x L

2
v,w

+ ∥fεj−1∥Hm
x L

2
v,w
)∥fεj − fεj−1∥Hm

x L
2
v,w
.

(31)

Hence, by substituting estimates (29)–(31) back into inequality (28), we obtain that for any
j ∈ N and 0⩽ i ⩽ n,

∥fεi,j+1 − fεi,j∥Hm(Rd
x)
≲
ˆ t

0

1+ ν

ε2ν
∥fεi,j− fεi,j−1∥Hm(Rd

x)
ds

+

ˆ t

0

1
ε2ν

(
1+ ∥fεj ∥Hm

x L
2
v,w

+ ∥fεj−1∥Hm
x L

2
v,w

)
∥fεj − fεj−1∥Hm

x L
2
v,w

ds,

(32)

as ε ∈ (0,1).
Finally, we shall prove by induction that there exists T > 0 sufficiently small so that simul-

taneously, it holds for any j ∈ N that

∥fεj ∥L∞T Hm
x L

2
v,w

:= sup
t∈[0,T]

∥fεj (t)∥Hm
x L

2
v,w

≲ ∥fε0∥Hm
x L

2
v,w

+
2T(1+ ν)

ε2ν

(
∥fε0∥Hm

x L
2
v,w

+ ∥fε0∥2Hm
x L

2
v,w

)
=:M( fε0,T)

(33)

and for any j ∈ N satisfying j ⩾ 2,

∥fεj − fεj−1∥L∞T Hm
x L

2
v,w

⩽ 1
2
∥fεj−1 − fεj−2∥L∞T Hm

x L
2
v,w
. (34)

Let k ∈ Nwith k⩾ 2. Suppose that estimates (33) and (34) hold simultaneously for all 1⩽ j ⩽
k. Then, by summing up estimate (32) over 0⩽ i ⩽ n, we deduce that

∥fεk+1 − fεk∥L∞T Hm
x L

2
v,w

≲ (1+ ν)T
ε2ν

∥fεk − fεk−1∥L∞T Hm
x L

2
v,w

(
1+ ∥fεk−1∥L∞T Hm

x L
2
v,w

+ ∥fεk∥L∞T Hm
x L

2
v,w

)
.

Using assumption (33) for cases j = k− 1 and j= k, we have that

∥fεk+1 − fεk∥L∞T Hm
x L

2
v,w

≲ (1+ ν)T
ε2ν

(1+ 2M( fε0,T))∥fεk − fεk−1∥L∞T Hm
x L

2
v,w
.

There exists T∗ = T∗( f
ε
0,ε,ν)> 0 such that

(1+ ν)T∗
ε2ν

(1+M( fε0,T∗))<
1
2
.

16
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Hence,

∥fεk+1 − fεk∥L∞T∗Hm
x L

2
v,w

≲ 1
2
∥fεk − fεk−1∥L∞T∗Hm

x L
2
v,w
. (35)

By working directly with equation (27) for j= 0, we can show by analogous derivations as in
the above paragraph that the inequality

∥fε1 − fε0∥L∞T Hm
x L

2
v,w

≲ (1+ ν)T
ε2ν

(
∥fε0∥L∞T Hm

x L
2
v,w

+ ∥fε0∥2L∞T Hm
x L

2
v,w

)
holds for any T > 0. By assumption (34) and inequality (35), we deduce that for all j that takes
integer value from 2 to k+ 1, it holds that

∥fεj − fεj−1∥L∞T∗Hm
x L

2
v,w

≲ 1
2j−1

∥fε1 − fε0∥L∞T∗Hm
x L

2
v,w
.

As a result,

∥fεk+1∥L∞T∗Hm
x L

2
v,w

≲ ∥fε0∥Hm
x L

2
v,w

+
k+1∑
j=1

∥fεj − fεj−1∥L∞T∗Hm
x L

2
v,w

⩽ ∥fε0∥Hm
x L

2
v,w

+ ∥fε1 − fε0∥L∞T∗Hm
x L

2
v,w

·
k+1∑
j=1

1
2j−1

⩽ ∥fε0∥Hm
x L

2
v,w

+ 2∥fε1 − fε0∥L∞T∗Hm
x L

2
v,w

≲M( fε0,T∗) .

This completes the proof of the induction. By the contraction mapping principle, the sequence
{fεj }j∈N0 is indeed Cauchy in L∞([0,T∗];Hm

x L
2
v,w). Taking the limit as j →∞, we obtain a local

solution to the approximate DVBGK Boltzmann equation (12).

Remark 8. In the proof of lemma 2, the existence of a local solution f ε to the approximate
DVBGK Boltzmann equation (12) is concluded by the Banach fixed point theorem. Hence,
for any t ∈ [0,T∗], it holds that

fε = Λε ( f
ε) .

With the help of the local energy estimate (15) and the standard continuous induction argu-
ment, we can extend this local solution f ε further to a local solution f̃ε ∈ L∞([0,T0];Hm

x L
2
v,w)

satisfying

f̃ε = Λε

(
f̃ε
)
, ∀ t ∈ [0,T0] ,

where the existence time T0 is a constant that only depends on the initial data g0,ε andm. Hence,
without loss of generality, we may always assume that f ε satisfies fε = Λε( f

ε) whenever we
consider a local solution f ε constructed in lemma 2.

As a direct application of lemma 2, we have the following implication.

17
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Corollary 9. Let m ∈ N with m> d and {εn}n∈N ⊂ (0,1) be a sequence that converges to zero
as n→∞. Let {g0,εn}n∈N be a sequence of initial conditions satisfying g0,εn ∈ Hm

x L
2
v,w for any

n ∈ N and

M∗ := sup
n∈N

∥g0,εn∥Hm
x L

2
v,w
<∞.

Then, there exists T∗0 = T∗0(M∗,m)> 0 such that for each n ∈ N, there exists a unique local
solution gεn ∈ L∞([0,T∗0 ];H

m
x L

2
v,w) to the approximate DVBGK Boltzmann equation (12) with

initial condition Λε(g0,εn) satisfying Λε(gεn) = gεn and the local energy estimate (15). Let

ρεn =
n∑

i=0

wi g
εn
i , uεn =

n∑
i=0

wi vi g
εn
i .

It holds that

sup
n∈N

∥ρεn∥L∞([0,T∗0 ];Hm(Rd
x))

+ sup
n∈N

∥uεn∥L∞([0,T∗0 ];Hm(Rd
x))

⩽ 3(2+ ν)
1
2 M∗. (36)

By suppressing subsequences, there exist

g ∈ L∞
(
[0,T∗0 ] ;H

m
x L

2
v,w

)
and (ρ,u) ∈ L∞

(
[0,T∗0 ] ;H

m
(
Rd
x

))
such that gεn → g weak-∗ in time t, weakly in Hm

x L
2
v,w and (ρ

εn ,uεn)→ (ρ,u) weak-∗ in time t,
weakly in Hm(Rd

x) as n→∞. In particular,

ρ=
n∑

i=0

wi gi, u=
n∑

i=0

wi vi gi

and

Gεn
eq − gεn → 0 in L2

(
[0,T∗0 ] ;H

m
x L

2
v,w

)
as n→∞. (37)

Proof. By lemma 2, we can observe that if we choose

T∗0 ⩽
ν

2CLEM2
∗

(38)

where CLE is the constant introduced in lemma 6, then for any n ∈ N, there exists a local
solution gεn ∈ L∞([0,T∗0 ];H

m
x L

2
v,w) to the approximate DVBGK Boltzmann equation (12) with

initial data Λε(g0,εn) satisfying Λε(gεn) = gεn and the local energy estimate (15) on the time
interval [0,T∗0 ]. By Plancherel’s identity, for each n ∈ N, we have that ∥Λε(g0,εn)∥Hm

x L
2
v,w

⩽
∥g0,εn∥Hm

x L
2
v,w
. Together with (38), we can deduce from the local energy estimate (15) that

sup
n∈N, t∈[0,T∗0 ]

∥gεn (t)∥Hm
x L

2
v,w

⩽ (2+ ν)
1
2 M∗. (39)

Estimate (36) is a direct consequence of (39).

18
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Since Hm(Rd
x) is separable, H

−m(Rd
x) is also separable [6, theorem 3.26]. Since L1([0,T∗0 ])

is separable, L1([0,T∗0 ];H
−m(Rd

x)) and L1([0,T∗0 ];H
−m
x L2

v,w) are both separable. Since the
sequences{
∥gεn∥L∞([0,T∗0 ];Hm

x L
2
v,w)

}
n∈N

,
{
∥ρεn∥L∞([0,T∗0 ];Hm(Rd

x))

}
n∈N

,
{
∥uεn∥L∞([0,T∗0 ];Hm(Rd

x))

}
n∈N

are all uniformly bounded, by suppressing subsequences, we conclude by [6, corollary 3.30]
that there exist g ∈ Hm

x L
2
v,w and (ρ,u) ∈ Hm(Rd

x) such that gεn → g weak-∗ in time t, weakly
in Hm

x L
2
v,w and (ρεn ,uεn)→ (ρ,u) weak-∗ in time t, weakly in Hm(Rd

x) as n→∞. Finally, the
convergence (37) results from the implication of local energy inequality (15) that

1
ε2

ˆ T∗0

0
∥Gεn

eq (s)− gεn (s)∥2Hm
x L

2
v,w

ds⩽ (2+ ν)∥gεn0 ∥2Hm
x L

2
v,w

⩽ (2+ ν)M2
∗.

This completes the proof of corollary 9.

Remark 10. Following the assumption made in corollary 9, since

ρεn
∗
⇀ρ and uεn

∗
⇀ u in σ

(
L∞
(
[0,T0] ;H

m
(
Rd
x

))
,L1
(
[0,T0] ;H

−m
(
Rd
x

)))
,

we have by the uniform estimate (36) that

∥ρ∥L∞([0,T0];Hm(Rd
x))

⩽ liminf
n→∞

∥ρεn∥L∞([0,T0];Hm(Rd
x))

≲ (2+ ν)
1
2 M∗,

∥u∥L∞([0,T0];Hm(Rd
x))

⩽ liminf
n→∞

∥uεn∥L∞([0,T0];Hm(Rd
x))

≲ (2+ ν)
1
2 M∗,

see e.g. [6, proposition 3.13].

2.3. Local well-posedness for the approximate equation

The uniqueness and continuous dependence on initial data for the local solution can be proved
by deriving the energy inequality for the difference between two local solutions for the approx-
imate equation (12) that are well-defined on the same time interval.

Proof of lemma 2 (Uniqueness and continuity with respect to initial data). Let ε> 0 be
fixed. Suppose that fε,gε ∈ L∞([0,T0];Hm

x L
2
v,w) are two local solutions for the approximate

DVBGK Boltzmann equation (12) on the same isotropic lattice (V,w) satisfying{
fε = Λε ( f

ε) , fε
∣∣
t=0

= ζ0,ε,

gε = Λε (g
ε) , gε

∣∣
t=0

= η0,ε

and the local energy inequality (15) respectively. Their difference hε := fε − gε satisfies the
vector equation

ε∂th
ε + v ·∇xh

ε =
1
εν

(
Hε

eq − hε
)
, hε

∣∣
t=0

= ζ0,ε − η0,ε, (40)

where for any 0⩽ i ⩽ n,

Hε
i,eq := ρεh +

vi · uεh
c2s

+
ε

2c4s

d∑
α,β=1

Λε

(
uεf,αu

ε
f,β − uεg,αu

ε
g,β

)(
vi,αvi,β − c2sδαβ

)
19
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with notations

ρεz :=
n∑

i=0

wi z
ε
i , uεz :=

n∑
i=0

wi vi z
ε
i for zε ∈ L∞

(
[0,T0] ;H

m
x L

2
v,w

)
and uεz,α denotes the αth component of uεz for any 1⩽ α⩽ d. Then, by applying ∂τx with |τ |s ⩽
m to the difference equation (40) and taking its inner product with ∂τx h

ε in the L2
xL

2
v,w sense,

we obtain that

1
2

n∑
i=0

wi
d
dt
∥∂τx hεi ∥2L2(Rd

x)
+

1
ε2ν

n∑
i=0

wi ∥∂τx Hε
i,eq − ∂τx h

ε
i ∥2L2(Rd

x)

=
1
ε2ν

n∑
i=0

wi

ˆ
Rd

(
∂τx Hε

i,eq − ∂τx h
ε
i

)
∂τx Hε

i,eq dx.

Analogously, in this case, the isotropy of (V,w) also guarantees that

n∑
i=0

wi
(
Hε
i,eq − hεi

)
= 0,

n∑
i=0

wi vi
(
Hε
i,eq − hεi

)
= 0.

Hence, considering Plancherel’s identity, we deduce that

1
ε2ν

n∑
i=0

wi

ˆ
Rd

(
∂τx Hε

i,eq − ∂τx h
ε
i

)
∂τx Hε

i,eq dx

=
1

2c4sεν

n∑
i=0

d∑
α,β=1

∑
σ⩽τ

wi
(
vi,αvi,β − c2sδαβ

)
×
ˆ
Rd

(
∂τx Hε

i,eq − ∂τx h
ε
i

)
Λε

(
∂σx u

ε
h,α∂

τ−σ
x uεf,β − ∂σx u

ε
g,α∂

τ−σ
x uεh,β

)
dx

⩽ `V,cs

2c4sεν

n∑
i=0

wi ∥∂τx Hε
i,eq − ∂τx h

ε
i ∥L2(Rd

x)

×
d∑

α,β=1

∑
σ⩽τ

(
∥∂σx uεh,α∂τ−σ

x uεf,β∥L2(Rd
x)
+ ∥∂σx uεg,α∂τ−σ

x uεh,β∥L2(Rd
x)

)
⩽ 1

2ε2ν

n∑
i=0

wi ∥∂τx Hε
i,eq − ∂τx h

ε
i ∥2L2(Rd

x)

+
`2V,csd

2|τ |ds
4c8sν

d∑
α,β=1

∑
σ⩽τ

(
∥∂σx uεh,α∂τ−σ

x uεf,β∥2L2(Rd
x)
+ ∥∂σx uεg,α∂τ−σ

x uεh,β∥2L2(Rd
x)

)
,

(41)

where `V,cs :=
(
max
1⩽i⩽n

|vi |
)2

+ c2s . By using proposition 4 to further estimate the right hand

side of (41), we obtain that

1
2
d
dt

n∑
i=0

wi ∥∂τx hεi ∥2L2(Rd
x)
+

1
2ε2ν

n∑
i=0

wi ∥∂τx Hε
i,eq − ∂τx h

ε
i ∥2L2(Rd

x)

⩽
`2V,csd

4|τ |ds
4c8sν

(
∥hε∥2Hm

x L
2
v,w
∥fε∥2

H|τ|s
x L2

v,w
+ ∥gε∥2Hm

x L
2
v,w
∥hε∥2

H|τ|s
x L2

v,w

)
.

(42)
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Summing up inequality (42) over all τ ∈ Nd
0 satisfying |τ |s ⩽ m gives us

1
2
d
dt
∥hε∥2Hm

x L
2
v,w

+
1

2ε2ν
∥Hε

eq − hε∥2Hm
x L

2
v,w

⩽
`2V,csd

4md

4c8sν
∥hε∥2Hm

x L
2
v,w

(
∥fε∥2Hm

x L
2
v,w

+ ∥gε∥2Hm
x L

2
v,w

)
.

(43)

Without loss of generality, we may assume that T0, which depends on sizes of ζ0,ε and η0,ε, is
chosen to be sufficiently small so that simultaneously

sup
t∈[0,T0]

∥fε (t)∥2Hm
x L

2
v,w

⩽ (ν+ 2)∥ζ0,ε∥2Hm
x L

2
v,w
,

sup
t∈[0,T0]

∥gε (t)∥2Hm
x L

2
v,w

⩽ (ν+ 2)∥η0,ε∥2Hm
x L

2
v,w
.

Applying the standard Gronwall’s inequality to (43), we deduce that the estimate

∥hε (t)∥2Hm
x L

2
v,w

⩽ ∥ζ0,ε − η0,ε∥2Hm
x L

2
v,w
etc1(ζ

0,ε,η0,ε)

holds for any t ∈ [0,T0] where

c1
(
ζ0,ε,η0,ε

)
:= c−8

s

(
2−1 + ν−1

)
`V,csd

4md
(
∥ζ0,ε∥2Hm

x L
2
v,w

+ ∥η0,ε∥2Hm
x L

2
v,w

)
.

Combining with the existence of the local solution, the local well-posedness of equation (12)
can thus be concluded.

3. Formal derivation of the incompressible Navier–Stokes equations

Suppose that (V,w) is an isotropic lattice associated with speed of sound cs. Let ε> 0
be fixed, m ∈ N with m> d and g0 ∈ Hm

x L
2
v,w. By lemma 2 and corollary 9, there exists

T0 = T0(g0,V,cs,m,d)> 0 sufficiently small such that the approximate DVBGK Boltzmann
equation (12) admits a unique local solution gε ∈ L∞([0,T0];Hm

x L
2
v,w) satisfying g

ε = Λε(gε),
gε
∣∣
t=0

= Λε(g0) and the local energy inequality

sup
t∈[0,T0]

∥gε (t)∥2Hm
x L

2
v,w

+
1
ε2

ˆ T0

0
∥Gε

eq (t)− gε (t)∥2Hm
x L

2
v,w

dt⩽ (2+ ν)∥g0∥2Hm
x L

2
v,w
. (44)

Due to (14), by taking the inner product of the approximate equation (12) with 1 and v in the
L2
v,w sense, we obtain that

n∑
i=0

εwi ∂tg
ε
i +

n∑
i=0

wi vi ·∇xg
ε
i = 0 = ε∂tρ

ε + divuε,

n∑
i=0

εwi vi ∂tg
ε
i +

n∑
i=0

wi vi (vi ·∇xg
ε
i ) = 0 = ε∂tu

ε +
n∑

i=0

wi∇x · (vi ⊗ vi g
ε
i ) .

(45)

For each 0⩽ i ⩽ n, we define the matrix Ai by

Ai = vi ⊗ vi − c2s I
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with I denoting the identity matrix. By making use of the matrix Ai, for each i we have that

∇x · (vi ⊗ vi g
ε
i ) =∇x · (Ai gεi )+ c2s∇xg

ε
i .

Furthermore, we decompose

∇x · (Ai gεi ) =∇x ·
(
Ai
(
gεi −Gε

i,eq

))
+∇x ·

(
AiGε

i,eq

)
.

3.1. Derivation of the transport term uε ·∇xuε

In this section, we show that the transport term uε ·∇xuε can be obtained by rewriting the
summation of ε−1wi∇x · (AiGε

i,eq) in i.

Lemma 11. It holds that

n∑
i=0

1
ε
wi∇x ·

(
AiGε

i,eq

)
=∇x · (uε ⊗ uε)+Rε

T (x, t)

whereRε
T(x, t) is a remainder vector depending on x and t which converges to zero in the sense

of distributions, i.e. for any Φ ∈ C∞
c (Rd× [0,T0]),∣∣∣∣ˆ T0

0

ˆ
Rd
Rε
T (x, t)Φ(x, t) dxdt

∣∣∣∣→ 0 as ε→ 0.

More explicitly, the remainder vector Rε
T(x, t) is defined by expressions (49) and (50) within

the proof of this lemma.

Proof. Substituting expression (13) for Gε
i,eq directly, we have that

n∑
i=0

1
ε
wi∇x ·

(
AiGε

i,eq

)
=

n∑
i=0

1
ε
∇x ·

(
wiAi ρ

ε +wiAi
vi · uε

c2s

)

+
1
2c4s

n∑
i=0

d∑
α,β=1

∇x ·
(
wiAi

(
vi,αvi,β − c2sδαβ

)
Λε

(
uεαu

ε
β

))
.

(46)

By using the second to the fourth summation condition in (4), we observe that for any 1⩽
α,β ⩽ d,

n∑
i=0

wiAi,α,β =
n∑

i=0

wi
(
vi,αvi,β − c2sδαβ

)
=

n∑
i=0

wi vi,αvi,β − c2sδαβ = 0

and

n∑
i=0

d∑
γ=1

wiAi,α,βvi,γu
ε
γ =

n∑
i=0

d∑
γ=1

wi
(
vi,αvi,β − c2sδαβ

)
vi,γu

ε
γ

=
d∑

γ=1

uεγ

(
n∑

i=0

wi vi,αvi,βvi,γ

)
− c2sδαβ

d∑
γ=1

uεγ

(
n∑

i=0

wi vi,γ

)
= 0,
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where the notation Ai,α,β represents the (α,β)-entry of the matrix Ai. Hence, it holds that

n∑
i=0

1
ε
∇x ·

(
wiAi ρ

ε +wiAi
vi · uε

c2s

)
= 0. (47)

Moreover, by using the third and the fifth summation condition in (4), we derive that for any
1⩽ γ,ζ ⩽ d,

n∑
i=0

wiAi,γ,ζ
(
vi,αvi,β − c2sδαβ

)
=

n∑
i=0

wi
(
vi,γvi,ζ − c2sδγζ

)(
vi,αvi,β − c2sδαβ

)
=

n∑
i=0

wi vi,αvi,βvi,γvi,ζ − c4sδαβδγζ = c4sδαγδβζ + c4sδαζδβγ .

(48)

By substituting (47) and (48) back into the right hand side of (46), for any 1⩽ γ ⩽ d, we obtain
that{

n∑
i=0

1
ε
wi∇x ·

(
AiGε

i,eq

)}
γ

=
1
2

d∑
α,β,ζ=1

(δαγδβζ + δαζδβγ)∂xζΛε

(
uεαu

ε
β

)
=

1
2

d∑
β,ζ=1

(
δβζ∂xζΛε

(
uεγu

ε
β

)
+ δβγ∂xζΛε

(
uεζu

ε
β

))
=

d∑
ζ=1

∂xζΛε

(
uεζu

ε
γ

)
= {∇x · (uε ⊗ uε)}γ +Rε

T (x, t)γ

where Rε
T(x, t)γ is the remainder function

Rε
T (x, t)γ :=

d∑
ζ=1

∂xζ
(
Λε

(
uεζu

ε
γ

)
− uεζu

ε
γ

)
, (49)

which converges to zero in the sense of distributions. Indeed, for any 1⩽ γ ⩽ d and Φ(x, t) ∈
C∞

c (Rd× [0,T0]), we observe by remark 7 that

ˆ T0

0

ˆ
Rd
Rε
T (x, t)γΦ(x, t) dxdt=−

ˆ T0

0

ˆ
Rd

(
Λε

(
uεγu

ε
)
− uεγu

ε
)
·∇xΦ dxdt

=−
ˆ T0

0

ˆ
Rd
uεγu

ε · (Λε (∇xΦ)−∇xΦ) dxdt.

By the Plancherel’s identity, we deduce that

∥Λε (∇xΦ)−∇xΦ∥2
H−m(R2

x)
= 4π2

ˆ
|ξ|⩾ 1

ε

(
1+ |ξ|2

)−m |ξ|2
∣∣Φ̂(ξ, t)

∣∣2 dξ
⩽ 4π2

ˆ
|ξ|⩾ 1

ε

∣∣Φ̂(ξ, t)
∣∣2 dξ → 0
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as ε→ 0 for any t ∈ [0,T0]. Using proposition 4 and inequality (36) to control uεγu
ε, we deduce

by the dominated convergence theorem that∣∣∣∣ˆ T0

0

ˆ
Rd
uεγu

ε · (Λε (∇xΦ)−∇xΦ) dxdt

∣∣∣∣
⩽
ˆ T0

0
∥uεγuε∥Hm(Rd

x)
∥Λε (∇xΦ)−∇xΦ∥H−m(Rd

x)
dt

≲ ∥g0∥2L∞([0,T0];Hm
x L

2
v,w)

ˆ T0

0

ˆ
|ξ|⩾ 1

ε

∣∣Φ̂(ξ, t)
∣∣2 dξ dt→ 0 as ε→ 0.

Finally, we set the vector field

Rε
T (x, t) := (Rε

T (x, t)1 ,R
ε
T (x, t)2) . (50)

The proof of lemma 11 is then completed.

3.2. Derivation of the diffusion term ∆xuε

In this section, we show that the diffusion term ∆xuε can be obtained by rewriting the sum-
mation of ε−1wi∇x ·

(
Ai (gεi −Gε

i,eq)
)
in i. For simplicity of notation, in the following we shall

denote gε −Gε
eq by Fε and gεi −Gε

i,eq by Fε
i for each 0⩽ i ⩽ n.

Lemma 12. It holds that

n∑
i=0

1
ε
wi∇x · (AiFε

i ) =−c2sν∆xu
ε − c2sν∇x divu

ε +Rε
D (x, t) ,

whereRε
D(x, t) is a remainder vector depending on x and t which converges to zero in the sense

of distributions, i.e. for any Φ ∈ C∞
c (Rd× [0,T0]),∣∣∣∣ˆ T0

0

ˆ
Rd
Rε
D (x, t)Φ(x, t) dxdt

∣∣∣∣→ 0 as ε→ 0.

More explicitly, the remainder vectorRε
D(x, t) is defined by expression (56) within the proof of

this lemma.

Proof. By rearranging the approximate equation (12), we note that

Fε
i =−ε2ν∂tgεi − ενvi ·∇xg

ε
i . (51)

for any 0⩽ i ⩽ n. By substituting expression (51) for Fε
i for each i, we rewrite

n∑
i=0

1
ε
wi∇x · (AiFε

i ) =−εν
n∑

i=0

wi∇x · (Ai ∂tgεi )− ν
n∑

i=0

wi∇x · (Ai (vi ·∇xg
ε
i )) .

Furthermore, we rewrite again

n∑
i=0

wi∇x · (Ai (vi ·∇xg
ε
i )) =

n∑
i=0

wi∇x · (Ai (vi ·∇xFε
i ))+

n∑
i=0

wi∇x ·
(
Ai
(
vi ·∇xGε

i,eq

))
.
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What we are about to show is that the diffusion term ∆xuε comes from

n∑
i=0

wi∇x ·
(
Ai
(
vi ·∇xGε

i,eq

))
(52)

whereas

ε
n∑

i=0

wi∇x · (Ai ∂tgεi )+
n∑

i=0

wi∇x · (Ai (vi ·∇xFε
i ))→ 0

in the sense of distributions as ε→ 0.
By substituting expression (13) for Gε

i,eq into (52), we observe that

n∑
i=0

wi∇x ·
(
Ai
(
vi ·∇xGε

i,eq

))
=

n∑
i=0

wi∇x · (Ai (vi ·∇xρ
ε))+

1
c2s

n∑
i=0

wi∇x · (Ai (vi ·∇x (vi · uε)))

+
ε

2c4s

n∑
i=0

wi∇x ·

 d∑
α,β=1

Ai,α,βAi
(
vi ·∇xΛε

(
uεαu

ε
β

)) .
For 1⩽ β ⩽ d, we can deduce from the second and the fourth summation condition in (4) that

{
n∑

i=0

wi∇x ·
(
Ai
(
vi ·∇xρ

ε))}
β

=

n∑
i=0

d∑
α,γ=1

wi
(
vi,αvi,β − c2s δαβ

)
vi,γ∂xα∂xγρ

ε

=

d∑
α,γ=1

∂xα∂xγρ
ε

(
n∑

i=0

wi vi,αvi,βvi,γ − c2s δαβ

n∑
i=0

wi vi,γ

)
= 0.

For 0⩽ i ⩽ n, we observe that

hεi := vi ·∇x (vi · uε) =
d∑

α=1

vi,α∂xα (vi · uε) =
d∑

α,β=1

vi,αvi,β∂xαu
ε
β .

Thus, for 1⩽ j ⩽ d, we have that

{
n∑

i=0

wi∇x · (Ai hεi )

}
j

=
n∑

i=0

d∑
k=1

wiAi,k,j∂xkh
ε
i =

n∑
i=0

d∑
k,α,β=1

wiAi,k,jvi,αvi,β∂xk∂xαu
ε
β

=
n∑

i=0

d∑
k,α,β=1

wi vi,kvi,jvi,αvi,β∂xk∂xαu
ε
β − c2s

n∑
i=0

d∑
k,α,β=1

wi δkjvi,αvi,β∂xk∂xαu
ε
β .

(53)
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Again, by the third summation condition in (4), we deduce that

n∑
i=0

d∑
k,α,β=1

wi δkjvi,αvi,β∂xk∂xαu
ε
β =

n∑
i=0

d∑
α,β=1

wi vi,αvi,β∂xj∂xαu
ε
β

=
d∑

α,β=1

(
n∑

i=0

wi vi,αvi,β

)
∂xj∂xαu

ε
β = c2s

d∑
α=1

∂xj∂xαu
ε
α.

(54)

On the other hand, we deduce by the fifth summation condition in (4) that

n∑
i=0

d∑
k,α,β=1

wi vi,αvi,βvi,kvi,j∂xk∂xαu
ε
β = c4s

d∑
k,α,β=1

(δαβδkj+ δαkδβj+ δαjδβk)∂xk∂xαu
ε
β

= c4s


d∑

α,β=1

δαβ∂xj∂xαu
ε
β +

d∑
k,α=1

δαk∂xk∂xαu
ε
j +

d∑
k,β=1

δβk∂xk∂xju
ε
β


= c4s


d∑

α=1

∂xj∂xαu
ε
α +

d∑
α=1

∂2
xαu

ε
j +

d∑
β=1

∂xβ∂xju
ε
β

 .
(55)

Substitute (54) and (55) back into (53), we obtain that{
n∑

i=0

wi∇x · (Ai hεi )

}
j

= c4s∆xu
ε
j + c4s∂xj divu

ε

for any 1⩽ j ⩽ d.
We set

Rε
D (x, t) :=−εν

n∑
i=0

wi∇x · (Ai ∂tgεi )− ν
n∑

i=0

wi∇x · (Ai (vi ·∇xFε
i ))

− εν

2c4s

n∑
i=0

wi∇x ·

 d∑
α,β=1

Ai,α,βAi
(
vi ·∇xΛε

(
uεαu

ε
β

)) . (56)

It is not hard to see that Rε
D converges to zero in the sense of distributions as ε→ 0. Indeed,

we take Φ ∈ C∞
c (Rd× [0,T0]). By the local energy estimate (44), for any 1⩽ β ⩽ d, we have

that ∣∣∣∣∣
n∑

i=0

wi

{ˆ T0

0

ˆ
Rd
∇x · (Ai (vi ·∇xFε

i ))Φ dxdt

}
β

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=0

d∑
α,γ=1

wiAi,α,βvi,γ

ˆ T0

0

ˆ
Rd
Fε
i ∂xγ∂xαΦ dxdt

∣∣∣∣∣∣
≲ T

1
2
0 ∥F

ε∥L2([0,T0];Hm
x L

2
v,w)

∥∇2Φ∥L∞([0,T0];H−m(Rd
x))

≲ εT
1
2
0 ∥g0∥Hm

x L
2
v,w
∥∇2Φ∥L∞([0,T0];H−m(Rd

x))
→ 0 as ε→ 0.
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On the other hand, by estimate (39), we have that∣∣∣∣∣
n∑

i=0

wi

ˆ T0

0

ˆ
Rd
Φ∇x · (Ai ∂tgεi ) dxdt

∣∣∣∣∣=
∣∣∣∣∣

n∑
i=0

wi

ˆ T0

0

ˆ
Rd

(
AT
i ∂tg

ε
i

)
·∇xΦ dxdt

∣∣∣∣∣
≲

n∑
i=0

wi

ˆ
Rd
|gεi,0|

∣∣(∇xΦ)(x,0)
∣∣dx+ n∑

i=0

wi

ˆ
Rd
|gεi (T0) |

∣∣(∇xΦ)(x,T0)
∣∣dx

+
n∑

i=0

wi

ˆ T0

0

ˆ
Rd
|gεi ||∂t∇xΦ|dxdt

≲ ∥g0∥L∞([0,T0];Hm
x L

2
v,w)

(
∥∇xΦ∥L∞([0,T0];H−m(Rd

x))
+T0∥∂t∇xΦ∥L∞([0,T0];H−m(Rd

x))

)
<∞.

Analogously, for any 1⩽ j ⩽ d, by using proposition 4, Plancherel’s identity and estimate (39),
we deduce that∣∣∣∣∣∣

n∑
i=0

wi


ˆ T0

0

ˆ
Rd
Φ∇x ·

 d∑
α,β=1

Ai,α,βAi
(
vi ·∇xΛε

(
uεαu

ε
β

)) dxdt


j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=0

d∑
α,β,γ,k=1

wiAi,α,βAi,k,jvi,γ

ˆ T0

0

ˆ
Rd
Λε

(
uεαu

ε
β

)
∂xk∂xγΦ dxdt

∣∣∣∣∣∣
≲ T0∥uε∥2L∞([0,T0];Hm(Rd

x))
∥∇2

xΦ∥L∞([0,T0];H−m(Rd
x))

≲ T0∥g0∥2L∞([0,T0];Hm
x L

2
v,w)

∥∇2
xΦ∥L∞([0,T0];H−m(Rd

x))
<∞.

This completes the proof of lemma 12.

4. The hydrodynamic limit

In this section, we further stick to the setting in section 3. Combining lemmas 11 and 12, we
rewrite system (45) as∂tuε − c2sν∆xu

ε +∇x · (uε ⊗ uε)− c2sν∇x divu
ε +

c2s
ε
∇xρ

ε +Rε (x, t) = 0,

divuε + ε∂tρ
ε = 0,

(57)

where Rε(x, t) :=Rε
T(x, t)+Rε

D(x, t). By the second equation of (57) and estimate (36), it is
easy to observe that divuε → 0 in the sense of distributions as ε→ 0. More precisely, we have
that∣∣∣∣ˆ T0

0

ˆ
Rd
ψ divuε dxdt

∣∣∣∣
⩽ ε

∣∣∣∣ˆ
Rd
ρε (T0)ψ (T0) dx

∣∣∣∣+ ε

∣∣∣∣ˆ
Rd
ρε (0)ψ (0) dx

∣∣∣∣+ ε

∣∣∣∣ˆ T0

0

ˆ
Rd
ρε∂tψ dxdt

∣∣∣∣
≲ ε∥g0∥L∞([0,T0];Hm

x L
2
v,w)

{
∥ψ∥L∞([0,T0];H−m(Rd

x))
+T

1
2
0 ∥∂tψ∥L2([0,T0];H−m(Rd

x))

} (58)
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for anyψ ∈ L∞([0,T0];H−m(Rd
x)) satisfying ∂tψ ∈ L2([0,T0];H−m(Rd

x)). Since u
ε → uweak-

∗ in t and weakly in Hm(Rd
x), we have that

ˆ T0

0

ˆ
Rd
ψ div(uε − u) dxdt=−

ˆ T0

0

ˆ
Rd
(uε − u) ·∇xψ dxdt→ 0 (59)

as ε→ 0 for any ψ ∈ L1([0,T0];H1(Rd
x)) as H

1(Rd
x) ↪→ H−m(Rd

x). Since T0 is finite, by com-
bining (58) and (59), we obtain that

ˆ T0

0

ˆ
Rd
ψ divudxdt= 0=

ˆ T0

0

ˆ
Rd
u ·∇xψ dxdt (60)

for any ψ ∈ L∞([0,T0];H1(Rd
x)) that satisfies ∂tψ ∈ L2([0,T0];H1(Rd

x)).

4.1. Application of the L2 Helmholtz projection to equation (57)

In order to get rid of the term ∇xρ
ε whose coefficient is ε−1 in the first equation of (57), we

consider the Helmholtz decomposition for L2(Rd
x). Let us recall that for any h ∈ L2(Rd

x), there
exists a unique decomposition h= h0 +∇xπ such that

h0 ∈ L2
σ

(
Rd
x

)
:=
{
f ∈ L2

(
Rd
x

) ∣∣ div f = 0
}
,

∇xπ ∈ G2
(
Rd
x

)
:=
{
∇xπ ∈ L2

(
Rd
x

) ∣∣ π ∈ L2
loc

(
Rd
x

)}
.

Moreover, it holds that

∥h0∥L2(Rd
x)
+ ∥∇xπ∥L2(Rd

x)
⩽ 2∥h∥L2(Rd

x)
. (61)

The Helmholtz projection, denoted by P, is the projection that maps h to h0, i.e. we have that
P(h) = h0 for h ∈ L2(Rd

x). Furthermore, the Helmholtz projection P satisfies the properties

P(h0) = h0 ∀ h0 ∈ L2
σ

(
Rd
x

)
and P(∇xπ) = 0 ∀ ∇xπ ∈ G2

(
Rd
x

)
. (62)

Let Q := I−P where I denotes the identity operator. Applying the Helmholtz projection P to
the first equation of (57), we observe by the second property of (62) that

∂tP(uε)− c2sν∆xP(uε)+P(∇x · (uε ⊗ uε))+P(Rε) = 0.

Proposition 13. Let h ∈ Hk(Rd
x) with k ∈ N satisfying k⩾ 1. Let h= h0 +∇xπ be the

Helmholtz decomposition of h in L2(Rd
x). For any τ ∈ Nd

0 with |τ |s ⩽ k, the unique Helmholtz
decomposition of ∂τx h in L

2(Rd
x) is given by ∂

τ
x h= ∂τx h0 +∇x(∂

τ
x π). Moreover, it holds that

∥∂τx h0∥L2(Rd
x)
+ ∥∇x (∂

τ
x π)∥L2(Rd

x)
⩽ 2∥∂τx h∥L2(Rd

x)
.

Proof. Let τ ∈ Nd
0 satisfying |τ |s ⩽ k. Since we are working in the whole space Rd, the L2

Helmholtz projection P is explicitly defined, i.e. for 1⩽ i, j ⩽ d, the (i, j)-entry of P is given
by Pij := δij+RiRj where Ri and Rj denote the ith and jth component of the Riesz transform,
respectively. Hence, it can be easily observed that the differentiation ∂x commutes with P
and ∂τx h0 = ∂τx P(h) = P(∂τx h). The L2 boundedness of P can be proved by working with the
explicit formula for P. As a result, by estimate (61) we have that

∥∂τx h0∥L2(Rd
x)
= ∥P(∂τx h)∥L2(Rd

x)
≲ ∥∂τx h∥L2(Rd

x)
,
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i.e. ∂τx h0 ∈ L2(Rd
x). Note that ∂τx h0 is divergence free. Analogously, by the L2 boundedness of

I−P and estimate (61), we have that

∥∂τx (∇xπ)∥L2(Rd) = ∥∂τx h−P(∂τx h)∥L2(Rd
x)
≲ ∥∂τx h∥L2(Rd

x)
,

i.e.∇x(∂
τ
x π) ∈ L2(Rd

x). By noting that ∂τx π ∈ L2(Rd
x) if τ ∈ Nd

0 satisfies 1⩽ |τ |s ⩽ k, we con-
clude that ∂τx h= ∂τx h0 +∇x(∂

τ
x π) is indeed the unique Helmholtz decomposition of ∂τx h in

L2(Rd).

Combining proposition 13 with corollary 9, we observe that the sequence {P(uε)}ε is uni-
formly bounded in L∞([0,T0];Hm(Rd

x)). Hence, by suppressing subsequences again, it can be
concluded that there exists ũ ∈ L∞([0,T0];Hm(Rd

x)) such that P(uε)→ ũ where the conver-
gence is weak-∗ in time t and weakly in Hm(Rd

x), i.e. for any Ψ ∈ L1([0,T0];H−m(Rd
x)), it

holds that

ˆ T0

0

ˆ
Rd
P(uε) ·Ψ dxdt→

ˆ T0

0

ˆ
Rd
ũ ·Ψ dxdt as ε→ 0. (63)

On the other hand, for any Ψ ∈ L1([0,T0];L2(Rd
x)), it holds that

ˆ T0

0

ˆ
Rd
P(uε − u) ·Ψ dxdt=

ˆ T0

0

ˆ
Rd
(uε − u) ·P(Ψ) dxdt→ 0 as ε→ 0. (64)

Combining convergence statements (63) and (64), we deduce that

ˆ T0

0

ˆ
Rd
ũ ·Ψ dxdt=

ˆ T0

0

ˆ
Rd
P(u) ·Ψ dxdt, ∀Ψ ∈ L1

(
[0,T0] ;L

2
(
Rd
x

))
. (65)

We next prove that with property (60), the limit point u is actually divergence free, i.e. in this
case we have P(u) = u a.e.

Lemma 14. Suppose that u ∈ L∞([0,T0];L2(Rd
x)) satisfies

ˆ T0

0

ˆ
Rd
u ·∇xψ dxdt= 0, ∀ ψ ∈W1,∞ ([0,T0] ;H

1
(
Rd
x

))
.

Then, for any Ψ ∈ C∞([0,T0];C∞
c (Rd

x)), it holds that

ˆ T0

0

ˆ
Rd
P(u) ·Ψ dxdt=

ˆ T0

0

ˆ
Rd
u ·Ψ dxdt.

Proof. Let Ψ ∈ C∞([0,T0];C∞
c (Rd

x)). For each t ∈ [0,T0], let Ψ(x, t) = Ψ0(x, t)+(
∇xΠ

)
(x, t) be the Helmholtz decomposition of Ψ(·, t) in L2(Rd

x) where Π(·, t) =
∆−1 divΨ(·, t). By integration by parts, we can easily observe that for each t ∈ [0,T0], Π(·, t)
is indeed a Riesz potential of Ψ(·, t). Since we are considering test function Ψ, there exists a
constant C(2,d), depending only on 2 and d, such that

∥Π(·, t)∥L2(Rd
x)
⩽ C(2,d)∥Ψ(·, t)∥

L
2d
d+2 (Rd

x)
<∞, (66)
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see e.g. [29, chapter V theorem 1]. Combining (66) with estimate (61) for the Helmholtz
decomposition, we deduce that Π ∈ L∞([0,T0];H1(Rd

x)). Moreover, since the operator
∆−1 div is linear, we have that

Π(x, t+ h)−Π(x, t)
h

=∆−1 div

(
Ψ(x, t+ h)−Ψ(x, t)

h

)
(67)

for any t, t+ h ∈ (0,T0). We next define

ϕ∗ (x) := sup
t∈[0,T0]

∣∣(∂tΨ)(x, t)
∣∣, ∀ x ∈ Rd.

By the mean value theorem, for any t, t+ h ∈ (0,T0), it holds that∣∣Ψ(x, t+ h)−Ψ(x, t)
∣∣⩽ hϕ∗ (x) . (68)

By integration by parts and (68), we can deduce that for any x ∈ Rd and t, t+ h ∈ (0,T0),∣∣∣∆−1 div

(
Ψ(x, t+ h)−Ψ(x, t)

h

)∣∣∣≲ ˆ
Rd

1
|x− y|d−1

∣∣∣Ψ(y, t+ h)−Ψ(y, t)
h

∣∣∣dy
⩽
ˆ
Rd

1
|x− y|d−1

|ϕ∗ (y) |dy=: I1 (|ϕ∗|)(x) .

Considering that Ψ is smooth with respect to both x and t and has compact support in Rd with
respect to x, it can be easily observed that ϕ∗ ∈ L2(Rd

x)∩L∞(Rd
x) also has compact support.

Hence, by analogous reason as (66), we have that I1(|ϕ∗|) ∈ L2(Rd
x). Then, by taking the limit

h→ 0 for equality (67), we can conclude by the dominated convergence theorem that

(∂tΠ)(x, t) = ∆−1 div(∂tΨ) , ∀ (x, t) ∈ Rd× [0,T0] .

Furthermore, since each component of ∇∆−1 div is nothing but a linear combination of RiRj
(1⩽ i, j ⩽ d), we observe that ∇∆−1 div is bounded in L2(Rd

x). Thus, we obtain that ∂tΠ ∈
L∞([0,T0];H1(Rd

x)). Using (60), we can finally deduce that for anyΨ ∈ C∞([0,T0];C∞
c (Rd

x)),
it holds that

ˆ T0

0

ˆ
Rd
P(u) ·Ψ dxdt=

ˆ T0

0

ˆ
Rd
P(u) ·Ψ0 dxdt=

ˆ T0

0

ˆ
Rd
u ·Ψ0 dxdt=

ˆ T0

0

ˆ
Rd
u ·Ψ dxdt.

This completes the proof of lemma 14.

Combining lemma 14 with the convergence statement (63) and equality (65), we establish
the convergence of P(uε) to u in the sense of distributions. In fact, the convergence of P(uε)
to u can be proved to be stronger than this weak sense.

Lemma 15. Suppressing subsequences, P(uε)→ u strongly in C([0,T0];Hm−1(Rd
x)), i.e. it

holds that

∥P(uε)− u∥L∞([0,T0];Hm−1(Rd
x))

→ 0 as ε→ 0.

30



Nonlinearity 38 (2025) 055014 Z Gu et al

Proof. The second equation of (45) can be written as

∂tu
ε +

1
ε
∇x ·

(
n∑

i=0

wiAiFε
i

)
+
c2s
ε
∇xρ

ε =−∇x · (uε ⊗ uε)−Rε
T. (69)

whereFε
i = gεi −Gε

i,eq for every 0⩽ i ⩽ n. Let τ ∈ Nd
0 with |τ |s ⩽ m− 1. Applying ∂τx and the

Helmholtz projection P to equation (69), we obtain

∂tP(∂τx uε)+
1
ε
P

(
∇x ·

(
n∑

i=0

wiAi ∂
τ
x Fε

i

))
=−

∑
σ⩽τ

P
(
(∂σx u

ε ·∇x)∂
τ−σ
x uε + ∂σx u

ε div
(
∂τ−σ
x uε

))
−P(∂τx Rε

T) .

(70)

Integrating equation (70) over the time interval [t1, t2]⊆ [0,T0] and then taking its inner product
with P

(
∂τx u

ε(t2)
)
−P
(
∂τx u

ε(t1)
)
in the L2

x sense, we have that∥∥P(∂τx uε (t2))−P(∂τx uε (t1))
∥∥
L2(Rd

x)

=−1
ε

ˆ t2

t1

ˆ
Rd

(
∇x ·

(
n∑

i=0

wiAi ∂
τ
x Fε

i

))
·P(∂τx uε (t2)− ∂τx u

ε (t1)) dxdt

−
∑
σ⩽τ

ˆ t2

t1

ˆ
Rd
(∂σx u

ε ·∇x)∂
τ−σ
x uε ·P(∂τx uε (t2)− ∂τx u

ε (t1)) dxdt

−
∑
σ⩽τ

ˆ t2

t1

ˆ
Rd

div
(
∂τ−σ
x uε

)
∂σx u

ε ·P(∂τx uε (t2)− ∂τx u
ε (t1)) dxdt

−
ˆ t2

t1

ˆ
Rd
∂τx Rε

T ·P(∂τx uε (t2)− ∂τx u
ε (t1)) dxdt= (I)+ (II)+ (III)+ (IV).

(71)

For any t ∈ [t1, t2], we can deduce simply by Hölder’s inequality that∣∣∣∣∣∣
d∑

α,β=1

ˆ
Rd

(
n∑

i=0

wiAi,α,β∂xα∂
τ
x Fε

i

)
P(∂τx uε (t2)− ∂τx u

ε (t1))β dx

∣∣∣∣∣∣
≲ ∥∇x∂

τ
x Fε (t)∥L2(Rd

x)
∥∂τx uε∥L∞([0,T0];L2(Rd

x))
.

Hence, by the local energy inequality (44), we have that

|(I) |≲ 1
ε

(ˆ t2

t1

∥∇x∂
τ
x Fε (t)∥2

L2(Rd
x)
dt

) 1
2

(t2 − t1)
1
2 ∥∂τx uε∥L∞([0,T0];L2(Rd

x))

≲ (2+ ν)
1
2 (t2 − t1)

1
2 ∥g0∥Hm

x L
2
v,w
∥∂τx gε∥L∞([0,T0];L2

xL
2
v,w)
.

As we have already seen in the proof of proposition 4, for m> d and σ ∈ Nd
0 satisfying σ ⩽ τ ,

either |σ|s or |τ |s − |σ|s + 1 is less than or equal tom− [ d2 ]− 1. Hence, wemay assumewithout
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loss of generality that |σ|s ⩽ m− [ d2 ]− 1. In this case, for t ∈ [t1, t2], we have that

∣∣∣∣∣∣
d∑

α,β=1

ˆ
Rd
(∂σx u

ε
α)
(
∂xα∂

τ−σ
x uεβ

)
P(∂τx uε (t2)− ∂τx u

ε (t1))β dx

∣∣∣∣∣∣
≲ ∥uε∥2

L∞([0,T0];Hm(Rd
x))

∥∂τx uε∥L∞([0,T0];L2(Rd
x))
.

Hence, by the local energy inequality (44), we deduce that

|(II) |≲ (2+ ν)(t2 − t1)∥g0∥2Hm
x L

2
v,w
∥∂τx gε∥L∞([0,T0];L2

xL
2
v,w)
. (72)

Note that |(III)| can be estimated in exactly the same way as |(II)|, i.e. estimate (72) holds for
|(III)|. Since

∣∣∣∣∣∣
d∑

α,β=1

ˆ
Rd

∂τ
x ∂xβ (Λε (u

ε
αu

ε
β)− uεαu

ε
β)P(∂τ

x u
ε (t2)− ∂τ

x u
ε (t1))α dx

∣∣∣∣∣∣
≲
∥∥P(∂τ

x u
ε (t2)− ∂τ

x u
ε (t1))

∥∥
L2(Rd

x)

d∑
β=1

{
∥∂τ

x ∂xβΛε (u
εuεβ)∥L2(Rd

x)
+ ∥∂τ

x ∂xβ (u
εuεβ)∥L2(Rd

x)

}
≲ ∥uε∥2L∞([0,T0];Hm(Rd

x))
∥∂τ

x u
ε∥L∞([0,T0];L2(Rd

x))

for any t ∈ [t1, t2], estimate (72) holds for |(IV)| analogously.
By summing up (71) over all τ ∈ Nd

0 with |τ |s ⩽ m− 1, we deduce by the local energy
inequality (44) that

∥∥P(uε (t2))−P(uε (t1))
∥∥
Hm−1(Rd

x)
≲ (2+ ν)

3
2

(
1+

√
T0

)
(t2 − t1)

1
2 ∥g0∥3Hm

x L
2
v,w
.

Therefore, this shows that {P(uε)}ε ⊂ C([0,T0];Hm−1(Rd
x)) and

{∥∥P(uε)(t)∥∥
Hm−1(Rd

x)

}
ε
is

equi-continuous in time t. By the Arzelà–Ascoli theorem, we conclude by suppressing sub-
sequences that there exists u∗ ∈ C([0,T0];Hm−1(Rd

x)) such that

∥P(uε)− u∗∥L∞([0,T0];Hm−1(Rd
x))

→ 0 as ε→ 0.

By splitting u∗ − u into (u∗ −P(uε))+ (P(uε)− u), we can deduce by lemma 14 that

ˆ T0

0

ˆ
Rd
(u∗ − u) ·Ψ dxdt= 0, ∀Ψ ∈ C∞ ([0,T0] ;C

∞
c

(
Rd
x

))
.

Finally, by the fundamental lemma of the calculus of variations, we conclude that u∗ = u a.e.
in Rd× [0,T0]. This completes the proof of lemma 15.
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4.2. Convergence to the incompressible Navier–Stokes equations

Finally, we decompose

P(∇x · (uε ⊗ uε)) = P(∇x · (P(uε)⊗P(uε)))+RP (u
ε)

with

RP (u
ε) := P(∇x · (P(uε)⊗Q(uε)))+P(∇x · (Q(uε)⊗P(uε)))+P(∇x · (Q(uε)⊗Q(uε))) .

Let C∞
c,σ(R

d) := {w ∈ C∞
c (Rd)

∣∣ divw= 0 in Rd}.

Lemma 16. For any Φ ∈ C∞([0,T0];C∞
c,σ(R

d
x)), it holds that∣∣∣∣ˆ T0

0

ˆ
Rd
RP (u

ε) ·Φ dxdt

∣∣∣∣→ 0 as ε→ 0.

Proof. Since the test function Φ we consider is already divergence free,

ˆ T0

0

ˆ
Rd
P(∇x · (P(uε)⊗Q(uε))) ·Φ dxdt=

ˆ T0

0

ˆ
Rd
P(uε)⊗Q(uε) :∇xΦ dxdt.

We further decompose

ˆ T0

0

ˆ
Rd
P(uε)⊗Q(uε) :∇xΦ dxdt=

ˆ T0

0

ˆ
Rd
(P(uε)− u)⊗Q(uε) :∇xΦ dxdt

+

ˆ T0

0

ˆ
Rd
u⊗Q(uε) :∇xΦ dxdt.

By lemma 15, we deduce that∣∣∣∣ˆ T0

0

ˆ
Rd
(P(uε)− u)⊗Q(uε) :∇xΦ dxdt

∣∣∣∣
⩽
ˆ T0

0

∥∥P(uε)(t)− u(t)∥L∞(Rd
x)

∥∥Q(uε)(t)
∥∥
L2(Rd

x)
∥∇xΦ∥L2(Rd

x)
dt

≲ T0∥P(uε)− u∥L∞([0,T0];H2(Rd
x))

∥g0∥Hm
x L

2
v,w
∥∇xΦ∥L∞([0,T0];L2(Rd

x))
→ 0

as ε→ 0. Since lemma 14 says that Q(u) = 0 a.e. in Rd× [0,T0], we have that

ˆ T0

0

ˆ
Rd
u⊗Q(uε) :∇xΦ dxdt=

ˆ T0

0

ˆ
Rd
u⊗Q(uε − u) :∇xΦ dxdt

=

ˆ T0

0

ˆ
Rd
(uε − u) ·Q(u ·∇xΦ) dxdt.

Noting that u ·∇xΦ ∈ L∞([0,T0];Hm(Rd
x)) and Hm(Rd

x) ↪→ H−m(Rd
x), we can then deduce

from the weak convergence of uε to u in L∞([0,T0];Hm(Rd
x)) that

ˆ T0

0

ˆ
Rd
(uε − u) ·Q(u ·∇xΦ) dxdt→ 0 as ε→ 0.

33



Nonlinearity 38 (2025) 055014 Z Gu et al

On the other hand, by using lemma 11, we can further deduce from system (45) that
ε∂tρ

ε + divQ(uε) = 0,

ε∂tQ(uε)+ c2s∇xρ
ε = −Q

(
∇x ·

(
n∑

i=0

wiAiFε
i

))
− εQ(∇x · (uε ⊗ uε))− εQ(Rε

T) ,

(73)

where the second equation is obtained by simply applying the projection Q to equation (69).
Combining corollary 9 with proposition 13, we observe that {ρε}ε and {Q(uε)}ε are both
uniformly bounded in L∞([0,T0];Hm(Rd

x)). By proposition 13 and the local energy inequal-
ity (44), we have that

ˆ T0

0

∥∥∥∥Q
(
∇x ·

(
n∑

i=0

wiAiFε
i

))∥∥∥∥
Hm−1(Rd

x)
dt≲ T

1
2
0

(ˆ T0

0
∥Fε (t)∥2Hm

x L
2
v,w

dt

) 1
2

≲ ε(2+ ν)
1
2 ∥g0∥Hm

x L
2
v,w
.

Combining propositions 4 and 13 and the local energy inequality (44), we can deduce that

ˆ T0

0

∥∥Q(∇x · (uε ⊗ uε))
∥∥
Hm−1(Rd

x)
dt≲

ˆ T0

0
∥uε (t)∥2

Hm(Rd
x)
dt

≲ T0 (2+ ν)∥g0∥2Hm
x L

2
v,w
.

(74)

Moreover, by the Plancherel’s identity, we observe that the L1
tH

m−1
x norm of Q

(
Rε
T

)
follows

estimate (74) as well. Therefore, we show that the right hand side of the second equation
in (73) converges to zero in the strong sense in L1([0,T0];Hm−1(Rd

x)) as ε→ 0. By a com-
pensated compactness result due to Lions and Masmoudi [21] (see also [10, theorem A.2]),
which basically says that fast oscillating acoustic waves do not contribute to the macroscopic
dynamics in the incompressible limits, we can conclude that

P(∇x · (Q(uε)⊗Q(uε)))→ 0

in the sense of distributions as ε→ 0. This completes the proof of lemma 16.

Lemma 17. For any Φ ∈ C∞([0,T0];C∞
c,σ(R

d
x)), it holds that

ˆ T0

0

ˆ
Rd
P(∇x · (uε ⊗ uε)) ·Φ dxdt→

ˆ T0

0

ˆ
Rd
(∇x · (u⊗ u)) ·Φ dxdt

as ε→ 0.

Proof. We decompose

ˆ T0

0

ˆ
Rd
(∇x · (P(uε)⊗P(uε))) ·Φ dxdt

=

ˆ T0

0

ˆ
Rd
(P(uε)− u) ·∇xΦ ·P(uε) dxdt+

ˆ T0

0

ˆ
Rd
u ·∇xΦ · (P(uε)− u) dxdt

+

ˆ T0

0

ˆ
Rd
(∇x · (u⊗ u)) ·Φ dxdt.
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Combining lemma 15 with proposition 13, corollary 9 and remark 10, we deduce that∣∣∣∣ˆ T0

0

ˆ
Rd
(P(uε)− u) ·∇xΦ ·P(uε) dxdt

∣∣∣∣+ ∣∣∣∣ˆ T0

0

ˆ
Rd
u ·∇xΦ · (P(uε)− u) dxdt

∣∣∣∣
≲ T0 (2+ ν)

1
2 ∥P(uε)− u∥L∞([0,T0];L2(Rd

x))
∥g0∥L∞([0,T0];Hm

x L
2
v,w)

∥∇xΦ∥L∞([0,T0];L∞(Rd
x))

→ 0 as ε→ 0.

The convergence of the remainder RP(uε) to zero in the sense of distributions is guaranteed
by lemma 16. We thus obtain lemma 17.

Summarising all the convergence results that we have derived in this paper, we have proved
that
ˆ T0

0

ˆ
Rd

{
∂tP(uε)− c2sν∆xP(uε)+P(∇x · (uε ⊗ uε))

}
·Φ dxdt

→
ˆ
Rd
u0 ·Φ(x,0) dx−

{ˆ T0

0

ˆ
Rd
u · ∂tΦ +(u⊗ u) :∇xΦ − c2sνu ·∆xΦ dxdt

}
as ε→ 0 for any Φ(x, t) ∈ C∞

c ([0,T0);C∞
c,σ(R

d
x)), i.e.

u ∈ C
(
[0,T0] ;H

m−1
(
Rd
x

))
∩L∞

(
[0,T0] ;H

m
(
Rd
x

))
is a local weak solution to the incompressible Navier–Stokes equations{

∂tu− c2sν∆xu+∇x · (u⊗ u)+∇xp= 0,

∇x · u= 0

with initial data u(x,0) = P(u0).

5. Characterisation for isotropic lattices

The purpose of this section is to characterise the 2D and 3D isotropic lattices associated with
the speed of sound cs = 3−

1
2 under a restriction condition on the particle velocity set V .

5.1. Relation to the cubature formula

Given a lattice (V,w), by considering n0 := {0,1,2, . . .,n} as the state space, we can define
a corresponding discrete and finite measure space (n0,2n0 ,P) and measurable functions Xα

(α ∈ {1,2, . . .,d}) by setting

P({i}) := wi and Xα (i) := vi,α (∀ i ∈ n0) .

On the other hand, suppose that we are given a measure space (Ω,2Ω,P) with Ω being a finite
set and the probability measure P having full support, i.e., this means that P({yi })> 0 for
each yi ∈ Ω, and measurable functions Xα (α ∈ {1,2, . . .,d}) on this measure space. Then, we
can construct a lattice by setting

viα := Xα (yi) and wi := P({yi }) (∀ yi ∈ Ω)
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and vi := (vi1,vi,2, . . .,vi d). Hence, there is a one-to-one mapping between lattices and finite
measure spaces with full support combined with d measurable functions on these measure
spaces. Let cs > 0 and Yα := csXα for any α. Then, the definition of an isotropic lattice asso-
ciated with the speed of sound cs can be rephrased as the following.

Definition 18. A lattice (V,w) is isotropic with the speed of sound cs > 0 if the following
conditions hold for its corresponding measure space (Ω,2Ω,P) and the measurable functions
Yα (α ∈ {1,2, . . .,d}):

1. (Ω,2Ω,P) is a probability space.
2. E[Yα] = 0 for any 1⩽ α⩽ d.
3. E[YαYβ ] = δαβ for any 1⩽ α,β ⩽ d.
4. E[YαYβYγ ] = 0 for any 1⩽ α,β,γ ⩽ d.
5. E[YαYβYγYζ ] = δαβδγζ + δαγδβζ + δαζδβγ for any 1⩽ α,β,γ,ζ ⩽ d.

Here E[·] represents the expectation of ‘·’, i.e. the integral of ‘·’ with respect to measure P.

Let Zα (α ∈ {1,2, . . .,d}) be independent Gaussian random variables with E[Zα] = 0 and
E[Z2

α] = 1 for α ∈ {1,2, . . .,d}. Then, conditions for Y= (Y1,Y2, . . .,Yd) in definition 18 are
summarised as

E [f(Y)] = E [f(Z)]

for any polynomial f of d variables with degree less than or equal to 4 where Z=
(Z1,Z2, . . .,Zd). To find such Y= (Y1,Y2, . . .,Yd) taking a finite number of values is a well-
studied problem in the context of cubature formulas, see e.g. [25]. For example,

• For d= 2, there is a solution with n= 7, i.e. the D2Q7 scheme exists,
• For d= 3, there is a solution with n= 13, i.e. the D3Q13 scheme exists,
• For d= 4, there is a solution with n= 22,
• For d= 5, there is a solution with n= 33,
• For d= 6, there is a solution with n= 44,
• For d= 7, there is a solution with n= 57,
• For d⩾ 8, there is a solution with n= d2 + 3d+ 3.

5.2. 2D and 3D isotropic lattices

In this section, we always consider cs = 3−
1
2 . Without this causing of any ambiguity, when we

refer to isotropic lattices, we omit the words ‘associated with the speed of sound 3−
1
2 ’.

Proposition 19. Suppose that the lattice (V,w) is isotropic and the support of Xα is in [−1,1]
for any α ∈ {1,2, . . .,d}. Then,

P(Xα = 0) =
2
3
, P(Xα = 1) = P(Xα =−1) =

1
6

for any α ∈ {1,2, . . .,d}.

Proof. Fix α ∈ {1,2, . . .,d}. Since the support of Xα is in [−1,1], it certainly holds that
X2
α ⩾ X4

α, i.e. P(X
2
α ⩾ X4

α) = 1. Since the algebraic conditions for an isotropic lattice say that
E[X2

α] = E[X4
α] =

1
3 , we must have P(X2

α > X4
α) = 0, i.e. P(X2

α = X4
α) = 1. That means that

P(Xα ∈ {−1,0,1}) = 1. Then, E[X2
α] =

1
3 implies that P(Xα = 0) = 2

3 and E[Xα] = 0 implies
that P(Xα = 1) = P(Xα =−1) = 1

6 .
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Proposition 20. Suppose that the lattice (V,w) is isotropic and the support of Xα is in [−1,1]
for any α ∈ {1,2, . . .,d}. Then, for α,β ∈ {1,2, . . .,d} satisfying α ̸= β, it holds that

• P(Xα = Xβ = 0) = 4
9 ,

• P(Xα = σα,Xβ = 0) = 1
9 for σα ∈ {−1,1},

• P(Xα = σα,Xβ = σβ) =
1
36 for σα,σβ ∈ {−1,1}.

Proof. Letα,β ∈ {1,2, . . .,d}withα ̸= β. For any k, j ∈ {−1,0,1}, for simplicity of notations
we denote P(Xα = k,Xβ = j) by pk,j. Note that E[XαXβ ] = 0 implies that

p1,1 + p−1,−1 − p1,−1 − p−1,1 = 0, (75)

E[X2
αXβ ] = 0 implies that

p1,1 − p−1,−1 − p1,−1 + p−1,1 = 0 (76)

and E[X2
αX

2
β ] =

1
9 implies that

p1,1 + p−1,−1 + p1,−1 + p−1,1 =
1
9
. (77)

Adding (75) and (76) together, we obtain that p1,1 = p1,−1 and p−1,−1 = p−1,1. Adding (75)
and (77) together, we obtain that

p1,1 + p−1,−1 =
1
18

= p1,−1 + p−1,1. (78)

Moreover, we have that

P(Xα = 1) =
1
6
= p1,1 + p1,0 + p1,−1, P(Xα =−1) =

1
6
= p−1,1 + p−1,0 + p−1,−1. (79)

By adding the two equations in (79) together and making use of (78), we deduce that

p1,0 + p−1,0 =
2
9
. (80)

By proposition 19, we have that 2
3 = P(Xβ = 0) = p1,0 + p0,0 + p−1,0. Hence, equality (80)

implies that p0,0 = 4
9 . In addition, by the linearity of expectation, we can deduce from E[Xα +

Xβ ] = 0 that

2p1,1 + p1,0 + p0,1 = p0,−1 + p−1,0 + 2p−1,−1 (81)

and from E[Xα −Xβ ] = 0 that

p1,0 + 2p1,−1 + p0,−1 = p0,1 + 2p−1,1 + p−1,0. (82)

Subtracting (82) from (81) and noting that p1,1 = p1,−1 and p−1,−1 = p−1,1, we deduce that
p0,1 = p0,−1. Using proposition 19 again, we have that 2

3 = P(Xα = 0) = p0,1 + p0,0 + p0,−1,
i.e. it holds that

p0,1 = p0,−1 =
1
9
. (83)
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Since (83) holds for any α,β ∈ {1,2, . . .,d} satisfying α ̸= β, by interchanging values of α
and β, we deduce that p1,0 = p−1,0 =

1
9 . Finally, by substituting values of p1,0 and p−1,0 back

into (79), we obtain that

p1,1 = p1,−1 =
1
36

= p−1,−1 = p−1,1.

This completes the proof of proposition 20.

Corollary 21. Let d= 2 and (V,w) be a lattice. Suppose that the support of Xα is in [−1,1]
for any α= 1,2. Then, the lattice (V,w) is isotropic if and only if the scheme is D2Q9.

Proof. Sufficiency is an outcome of propositions 19 and 20. Necessity is a well-known fact
which can be easily checked by direct calculations, see e.g. [16].

Proposition 22. Suppose that the lattice (V,w) is isotropic and the support of Xα is in [−1,1]
for any α ∈ {1, . . .,d}. Suppose that α,β,γ ∈ {1, . . .,d} satisfying α ̸= β, α ̸= γ and β ̸= γ.
Then, there exist constants c ∈ [0, 1

72 ] and cα, cβ , cγ ∈ [− 1
72 ,

1
72 ] such that

• P(Xα = Xβ = Xγ = 0) = 1
3 − 8c,

• P(Xα = σα,Xβ = Xγ = 0) = 1
18 + 4c+ 4σαcα for σα ∈ {−1,1},

• P(Xα = σα,Xβ = σβ ,Xγ = 0) = 1
36 − 2c− 2σαcα − 2σβcβ for σα,σβ ∈ {−1,1},

• P(Xα = σα,Xβ = σβ ,Xγ = σγ) = c+σαcα +σβcβ +σγcγ for σα,σβ ,σγ ∈ {−1,1}.

Moreover, the constants c,cα,cβ ,cγ satisfy the inequalities
|cα|+ |cβ |+ |cγ |⩽ c,

c+ |cζ |+ |cη|⩽
1
72

for any ζ,η ∈ {α,β,γ} with ζ ̸= η.

Proof. Let α,β,γ ∈ {1,2, . . .,d} satisfy the relations α ̸= β, β ̸= γ and α ̸= γ. For any i, j,k ∈
{−1,0,1}, for simplicity of notations we denote P(Xα = i,Xβ = j,Xγ = k) by pi,j,k. Since
E[XαXβXγ ] = 0 and E[X2

αXβXγ ] = 0, it holds that

0= E
[(
Xα +X2

α

)
XβXγ

]
= 2p1,1,1 − 2p1,1,−1 − 2p1,−1,1 + 2p1,−1,−1 (84)

and

0= E
[(
Xα −X2

α

)
XβXγ

]
=−2p−1,1,1 + 2p−1,1,−1 + 2p−1,−1,1 − 2p−1,−1,−1. (85)

By (84), we have that

p1,1,1 − p1,1,−1 = p1,−1,1 − p1,−1,−1. (86)

Replacing (α,β) by (β,α), we deduce from (86) that

P(Xα = 1,Xβ =−1,Xγ = 1)−P(Xα = 1,Xβ =−1,Xγ =−1)

= P(Xα = 1,Xβ = 1,Xγ = 1)−P(Xα = 1,Xβ = 1,Xγ =−1)

= P(Xβ = 1,Xα = 1,Xγ = 1)−P(Xβ = 1,Xα = 1,Xγ =−1)

= P(Xβ = 1,Xα =−1,Xγ = 1)−P(Xβ = 1,Xα =−1,Xγ =−1) ,

(87)
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i.e. we obtain that p1,−1,1 − p1,−1,−1 = p−1,1,1 − p−1,1,−1. In addition, (85) implies that

p−1,1,1 − p−1,1,−1 = p−1,−1,1 − p−1,−1,−1. (88)

Combining (86)–(88), we can conclude that the quantity pσα,σβ ,1 − pσα,σβ ,−1 is independent
of σα,σβ ∈ {−1,1}. Hence, without causing any ambiguity, we may set 2cγ := pσα,σβ ,1 −
pσα,σβ ,−1 for σα,σβ ∈ {−1,1}. By applying analogous argument to consider

E
[
Xα

(
Xβ +X2

β

)
Xγ

]
= 0= E

[
Xα

(
Xβ −X2

β

)
Xγ

]
,

E
[
XαXβ

(
Xγ +X2

γ

)]
= 0= E

[
XαXβ

(
Xγ −X2

γ

)]
,

we can deduce that p1,σβ ,σγ
− p−1,σβ ,σγ

=: 2cα is independent of σβ ,σγ ∈ {−1,1} and
pσα,1,σγ

− pσα,−1,σγ
=: 2cβ is independent of σα,σγ ∈ {−1,1}.

Let c := p1,1,1 − cα − cβ − cγ . Then,

p1,1,−1 = p1,1,1 − 2cγ =⇒ p1,1,−1 = c+ cα + cβ − cγ ,

p−1,1,1 = p1,1,1 − 2cα =⇒ p−1,1,1 = c− cα + cβ + cγ ,

p1,−1,1 = p1,1,1 − 2cβ =⇒ p1,−1,1 = c+ cα − cβ + cγ .

(89)

Using (89), we further deduce that

p−1,1,−1 = p−1,1,1 − 2cγ =⇒ p−1,1,−1 = c− cα + cβ − cγ ,

p1,−1,−1 = p1,−1,1 − 2cγ =⇒ p1,−1,−1 = c+ cα − cβ − cγ ,

p−1,−1,1 = p−1,1,1 − 2cβ =⇒ p−1,−1,1 = c− cα − cβ + cγ ,

p−1,−1,−1 = p−1,−1,1 − 2cγ =⇒ p−1,−1,−1 = c− cα − cβ − cγ .

Summarising what we have obtained, it holds that

pσα,σβ ,σγ
= c+σαcα +σβcβ +σγcγ (90)

for any σα,σβ ,σγ ∈ {−1,1} with c := p1,1,1 − cα − cβ − cγ .
By the fourth bullet point of proposition 20 and (90), we can deduce that for σβ ,σγ ∈

{−1,1}

p0,σβ ,σγ
= pσβ ,σγ

− p1,σβ ,σγ
− p−1,σβ ,σγ

=
1
36

− 2c− 2σβcβ − 2σγcγ .

Analogously, for σα,σγ ∈ {−1,1}, it holds that

pσα,0,σγ
=

1
36

− 2c− 2σαcα − 2σγcγ (91)

and for σα,σβ ∈ {−1,1}, it holds that

pσα,σβ ,0 =
1
36

− 2c− 2σαcα − 2σβcβ .

Furthermore, for σγ ∈ {−1,1}, we deduce from the third bullet point of proposition 20
and (91) that

p0,0,σγ
= p0,σγ

− p1,0,σγ
− p−1,0,σγ

=
1
18

+ 4c+ 4σγcγ . (92)
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Similarly, for σα ∈ {−1,1}, it holds that

pσα,0,0 =
1
18

+ 4c+ 4σαcα

and for σβ ∈ {−1,1}, it holds that

p0,σβ ,0 =
1
18

+ 4c+ 4σβcβ .

Using the first bullet point of proposition 20 and (92), we deduce that

p0,0,0 = p0,0 − p0,0,1 − p0,0,−1 =
1
3
− 8c.

Finally, we let

s̃gn(x) =

{
1, if x⩾ 0,

− 1, if x< 0.

By considering (90), we can deduce from

P(Xα =−s̃gn(cα) ,Xβ =−s̃gn(cβ) ,Xγ =−s̃gn(cγ))⩾ 0

that

0⩽ |cα|+ |cβ |+ |cγ |⩽ c.

Since P(Xα = s̃gn(cα),Xβ = s̃gn(cβ),Xγ = 0)⩾ 0, we have that

c+ |cα|+ |cβ |⩽
1
72
.

Similarly, by considering P(Xα = s̃gn(cα),Xβ = 0,Xγ = s̃gn(cγ))⩾ 0 and P(Xα = 0,Xβ =
s̃gn(cβ),Xγ = s̃gn(cγ))⩾ 0, we also have that

c+ |cα|+ |cγ |⩽
1
72

and c+ |cβ |+ |cγ |⩽
1
72
.

This completes the proof of proposition 22.

Proposition 23. Let d= 3 and (V,w) be a lattice. Suppose that the support of Xα is in
{−1,0,1} for any α= 1,2,3. For any 1⩽ α,β,γ ⩽ 3 satisfying α ̸= β, α ̸= γ and β ̸= γ,
if there exist constants c ∈ [0, 1

72 ] and cα, cβ , cγ ∈ [− 1
72 ,

1
72 ] such that

• P(Xα = 0) = 2
3 and P(Xα = 1) = P(Xα =−1) = 1

6 ,
• P(Xα = Xβ = 0) = 4

9 ,
• P(Xα = σα,Xβ = 0) = 1

9 for σα ∈ {−1,1},
• P(Xα = σα,Xβ = σβ) =

1
36 for σα,σβ ∈ {−1,1},

• P(Xα = Xβ = Xγ = 0) = 1
3 − 8c,

• P(Xα = σα,Xβ = Xγ = 0) = 1
18 + 4c+ 4σαcα for σα ∈ {−1,1},
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• P(Xα = σα,Xβ = σβ ,Xγ = 0) = 1
36 − 2c− 2σαcα − 2σβcβ for σα,σβ ∈ {−1,1},

• P(Xα = σα,Xβ = σβ ,Xγ = σγ) = c+σαcα +σβcβ +σγcγ for σα,σβ ,σγ ∈ {−1,1},

then (V,w) is isotropic.

Proof. This proof contains nothing but direct calculations. It can be easily verified that

E [Xα] = 0,

E
[
X2
α

]
=

1
3
,

E
[
X3
α

]
= 0,

E
[
X4
α

]
=

1
3
,∑

σα∈{−1,0,1}

P(Xα = σα) = 1,

∑
σα,σβ∈{−1,0,1}

P(Xα = σα,Xβ = σβ) = 1,

∑
σα,σβ ,σγ∈{−1,0,1}

P(Xα = σα,Xβ = σβ ,Xγ = σγ) = 1.

For α,β ∈ {1,2,3} with α ̸= β, we have that

E [XαXβ ] =
1
36

· {12 + 1 · (−1)+ (−1) · 1+(−1)2}= 0,

E
[
X2
αXβ

]
=

1
36

· {13 + 12 · (−1)+ (−1)2 · 1+(−1)2 · (−1)}= 0,

E
[
X3
αXβ

]
=

1
36

· {14 + 13 · (−1)+ (−1)3 · 1+(−1)3 · (−1)}= 0,

E
[
X2
αX

2
β

]
=

1
36

· {14 + 12 · (−1)2 +(−1)2 · 12 +(−1)2 · (−1)2}= 1
9
.

For α,β,γ ∈ {1,2,3} with α ̸= β, α ̸= γ and β ̸= γ, we have that

E [XαXβXγ ] = 13 · (c+σα +σβ +σγ)+ 12 · (−1) · (c+σα +σβ −σγ)

+ 1 · (−1) · 1 · (c+σα −σβ +σγ)+ 1 · (−1) · (−1) · (c+σα −σβ −σγ)

+ (−1) · 12 · (c−σα +σβ +σγ)+ (−1) · 1 · (−1) · (c−σα +σβ −σγ)

+ (−1) · (−1) · 1 · (c−σα −σβ +σγ)+ (−1) · (−1) · (−1) · (c−σα −σβ −σγ)

= 0

and

E
[
X2
αXβXγ

]
= 14 ·

(
c+σα +σβ +σγ

)
+ 13 · (−1) ·

(
c+σα +σβ −σγ

)
+ 12 · (−1) · 1 ·

(
c+σα −σβ +σγ

)
+ 12 · (−1) · (−1) ·

(
c+σα −σβ −σγ

)
+(−1)2 · 12 ·

(
c−σα +σβ +σγ

)
+(−1)2 · 1 · (−1) ·

(
c−σα +σβ −σγ

)
+(−1)2 · (−1) · 1 ·

(
c−σα −σβ +σγ

)
+(−1)2 · (−1) · (−1) ·

(
c−σα −σβ −σγ

)
= 0.

We thus obtain proposition 23.

41



Nonlinearity 38 (2025) 055014 Z Gu et al

Remark 24. Combining propositions 22 and 23, we obtain a characterisation for 3D isotropic
lattices. Different from the 2D case, 3D isotropic lattice associated with the speed of sound
3−

1
2 is not unique even if we require Xα to be supported in [−1,1]. For example,

• If c= 1
72 and cα = cβ = cγ = 0, this corresponds to the D3Q15 scheme,

• If c= cα = cβ = cγ = 0, this corresponds to the D3Q19 scheme,
• If c= 1

216 and cα = cβ = cγ = 0, this corresponds to the D3Q27 scheme,

see e.g. [16].

Remark 25. The characterisations of 2D and 3D isotropic lattices (corollary 21, propositions
22 and 23, respectively) in this section rely sharply on the assumption cs = 3−

1
2 . Indeed, sup-

pose that cs ̸= 3−
1
2 . Then, even if we assume that Xα is supported in [−1,1], it is possible for

Xα to be supported on values other than −1,0,1. For example, in the 2D case, if we consider
V = {v0,v1,v2, . . .,v6} ⊂ R2 where

v0 = 0,

vj =

(
cos

2π j
6
, sin

2π j
6

)
, j = 1, . . .,6

and w= (w0,w1,w2, . . .,w6) ∈ R7
+ where

w0 =
1
2
,

wj =
1
12
, j = 1, . . .,6,

then it can be easily checked that the combination (V,w) is an isotropic lattice associated with
the speed of sound cs = 1

2 , which corresponds to the D2Q7 scheme. If we apply the proof of
proposition 19 to the setting of (V,w), then we shall face the problem that E[X2

α] ̸= E[X4
α],

which further induces the possibility that P(X2
α > X4

α)> 0. Hence, it is not necessary for Xα

to support in {−1,0,1}.

Remark 26. It is worth noting that requiring the random variable Xα to be supported in [−1,1]
is not necessary for a lattice to be isotropic. If (V,w) is an isotropic lattice associated with the
speed of sound cs, then for any real number λ> 0, the lattice (λV,w) is also an isotropic lattice
associated with speed of sound cs

λ where λV := {λvi
∣∣ 0⩽ i ⩽ n}.

6. Numerical investigation of the hydrodynamic limit of the DVBGK Boltzmann
problem

In this section we conduct numerical computations designed to illustrate the hydrodynamic
limit investigated in section 4. This is done by comparing the macroscopic velocity fields
derived from the solutions of the DVBGK Boltzmann system (5) which are obtained for a
sequence of decreasing values of ε to the solutions of the Navier–Stokes system (17) where the
initial condition for the former system, g0,ε, is chosen to be consistent with the initial condition
for the latter, u0, cf theorem 3. For simplicity and to fix attention, we focus here on the 2D
setting (d= 2) and consider both the DVBGK Boltzmann and the Navier–Stokes systems (5)
and (17) on a torus T2

x := [0,1]2 rather than on an unbounded domain R2
x , which is motivated

by computational considerations. Defining vorticity ω :=∇⊥
x · u, where ∇⊥

x := (−∂x2 ,∂x1), it
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is convenient to rewrite the Navier–Stokes system in the vorticity form obtained applying the
operator

(
∇⊥
x ·
)
to the first equation in (17)
∂tω+(u ·∇x)ω− c2sν∆xω = 0,

u=∇⊥
x ∆

−1
x ω,

ω (x,0) = ω0 :=∇⊥
x · u0,

(93)

where ∆−1
x is the inverse Laplacian equipped with the periodic boundary conditions on

T2
x . Since solutions of the 2D Navier–Stokes system (93) conserve the mean vorticity,

(d/dt)
´
T2
x
ω(x, t)dx= 0, t⩾ 0, it is necessary to restrict the admissible initial conditions ω0

to have a zero mean,
´
T2
x
ω0(x)dx= 0, as this will ensure the Laplacian can be inverted at all

times (cf the second equation in (93)). For the DVBGK Boltzmann problem we consider the
D2Q9 lattice given by (9), (10) and the speed of sound cs = 1√

3
.

We then focus on the following two macroscopic initial conditions which for convenience
are expressed here in the vorticity form:

• the Taylor–Green vortex

ω0 (x1,x2) = 10sin(2πax1)sin(2πbx2) , (94)

where a= b= 2, which leads to a solution of system (93) where the nonlinear term (u ·∇x)ω
vanishes identically for all times t⩾ 0, such thatω effectively solves the heat Equation ∂tω−
c2sν∆xω = 0 on T2

x and has therefore the form [32]

ω (x1,x2, t) = ω0 (x1,x2) exp
[
−4π2

(
a2 + b2

)
c2sν t

]
, (95)

• the perturbed Taylor–Green vortex

ω0 (x1,x2) =−sin(2π x1)sin(2π x2)+ exp
[
−50

(
(x1 − 1/2)2 +(x2 − 1/2)2

)]
+C, (96)

where the constant C is chosen to ensure that this initial data satisfies the zero-mean con-
dition; solutions of the Navier–Stokes system (93) subject to the initial condition (96) need
to be found numerically as described below in section 6.1; since our spatial domain is the
2D torus, the function in (96) should be interpreted as a periodic extension of a function
restricted to 0⩽ x1,x2 ⩽ 1 and since the second term on the right-hand side is not a peri-
odic function, this initial condition has in fact discontinuous derivatives; however, due to
the rapid decay of the exponential function away from the point (1/2,1/2), the magnitude
of this discontinuity is negligible and does not affect the numerical results.

The microscopic initial condition g0,ε for the DVBGK Boltzmann system is then obtained
from (94) or (96) using relation (16) in which we set u0 =∇⊥

x ∆
−1
x ω0 and, without the loss of

generality, ρ0(x1,x2) = 1, ∀(x1,x2) ∈ T2
x .

6.1. Numerical solution of the DVBGK Boltzmann and Navier–Stokes equations

The DVBGK Boltzmann and Navier–Stokes systems (5) and (93) are approximated numeric-
ally using a standard pseudo-spectral approach where the dependence of the solution on the
space variable x is represented in terms of a truncated Fourier series and the use of this ansatz
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can be interpreted as application of the cutoff function Λε introduced in (11). Derivatives are
then evaluated exactly in the Fourier (spectral) space whereas all product terms are computed
in the physical space with de-aliasing [7]. Discrete Fourier transforms relating the two rep-
resentations are evaluated using the FFT algorithm. The system of coupled ordinary differen-
tial equations resulting from this approximation is then integrated in time using the standard
fourth-order Runge–Kutta method (RK4). This is an explicit approach and hence only con-
ditionally stable, so care must be exercised to ensure the stability of these computations by
using a sufficiently small time step ∆t. In fact, the DVBGK Boltzmann problem is ‘stiff’, in
the sense that the maximum allowable time step decreases as ε→ 0. For both problems intro-
duced above, the stability and accuracy of computations was carefully verified by performing
these computations with different time steps ∆t and different numerical resolutions N (where
N is the number of grid points used to discretise the domain T2

x in each direction). Moreover,
the numerical solution of the Navier–Stokes system (93) can be validated by considering the
problem with the initial condition (94), where an exact solution is available, cf (95). This is
in fact a demanding test as it requires the vanishing of the nonlinear term in the approxim-
ate solution. This approach has been numerically implemented in MATLAB and the code is
available on Github [23].

In the numerical solutions of the DVBGK Boltzmann and the Navier–Stokes system (5)
and (93) discussed below the spatial resolution is N= 128. In the latter case the time step is
∆t= 2× 10−6, whereas in the former it is in the range ∆t ∈ [2× 10−6,2× 10−4] depending
on the value of ε (∆t is smaller for decreasing ε). Due to this limitation, we did not consider
values of ε smaller than 10−1.

6.2. Results

Before examining the dependence of the difference between the macroscopic solutions ωε :=
∇⊥
x · uε of the DVBGK Boltzmann system (5) and the solutions ω of the Navier–Stokes sys-

tem (93) on ε, we provide some additional information about the flows considered. In both
cases, the kinematic viscosity (or the relaxation time in case of the DVBGK Boltzmann sys-
tem) is ν = 10−4.

As is evident from its exact solution in (95), due to the absence of the nonlinear effects,
the structure of the Navier–Stokes flow corresponding to the initial condition (94) remains
unchanged in time with only its magnitude vanishing exponentially. Snapshots of the vorticity
field ω(x, t) at times t= 0,8,16,32 during the evolution of the Navier–Stokes flow with the
initial condition (96) are shown in figure 1. Stretching of the vortices present in the initial field
ω0 is evident, giving rise to the formation of thin elongated filamentswhich is themain dynamic
mechanism sustaining the enstrophy cascade in 2D turbulence [19]. To further characterise this
flow, we define the enstrophy and palinstrophy as

E (t) := 1
2

ˆ
T2
x

ω2 dx, (97)

P (t) :=
1
2

ˆ
T2
x

|∇ω|2 dx, (98)

which are equivalent to, respectively, the L2 norm and the H1 seminorm of the vorticity. It can
be shown that, for smooth solution of the Navier–Stokes system (93), the time evolution of
these quantities is governed by the equations [2]

dE
dt

=−2νP, (99)
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Figure 1. Snapshots of the vorticity field ω(x1,x2, t) at times t= 0,8,16,32 during the
evolution of the Navier–Stokes flow with the initial condition (96).

dP
dt

=

ˆ
T2
x

(u ·∇x)ω∆xωdx− ν

ˆ
T2
x

(∆xω)
2 dx. (100)

We see that, while the enstrophy E(t) is a nonincreasing function of time, the evolution of the
palinstrophy is a result of the competition between the stretching of vorticity filaments and
viscous dissipation represented, respectively, by the cubic and the negative-definite quadratic
term in (100). This behaviour is indeed confirmed by the data shown in figures 2(a) and (b),
where, in particular, we observe that the palinstrophy P(t) initially increases by a factor of
about three. This demonstrates that the Navier–Stokes flow corresponding to the initial condi-
tion (96) is at least for the times considered in figures 1 and 2 dominated by nonlinear effects.
An animated version of these figures is included as the supplemental data of this article.

Finally, our main results are shown in figure 3 where we plot the (normalised) norms of
the difference between the macroscopic vorticity ωε in the DVBGK Boltzmann solution and
the vorticity ω in the Navier–Stokes flow at a certain time t=T as functions of ε. The time
when this difference is evaluated is chosen as T = 1 and T = 32 for the problems with the
initial conditions (94) and (96). This latter time corresponds to an instance shortly after the
palinstrophy P(t) has peaked, cf figure 2(b). It is clear from figure 3 that the norm of the
difference can in both cases be represented very accurately by a power-law relation obtained
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Figure 2. The time evolution of (a) the enstrophy E(t) and (b) the palinstrophy P(t),
cf (97) and (98), in the Navier–Stokes flow with the initial condition (96).

via a least-squared fit

∥ω (T)−ωε (T)∥L2(T2
x)

∥ω (T)∥L2(T2
x)

≈

{
1.0458× 10−6 ε2.0022 for the flow with initial condition (94)

7.2178× 10−4 ε2.0001 for the flow with initial condition (96)

=O
(
ε2
)
. (101)

Essentially the same power-law behaviour (except for a different prefactor) was also observed
in both cases for different values of T. We note that in the light of the identity ∥∇⊥

x · u∥L2(T2
x)
=

∥∇xu∥L2(T2
x)
, relation (101) provides an indication about the rate with which the hydrodynamic

limit is achieved in 2D in terms of the H1 norm (at the level of velocity).

7. Summary and conclusions

In conclusion, in this paper we establish that a local classical solution to the d-dimensional
incompressible Navier–Stokes equations (d⩾ 2) can be constructed by considering the hydro-
dynamic limit of a discrete-velocity Boltzmann equation with a quadratic polynomial-type
collision operator obtained as a simplification of the BGK Boltzmann collision operator, as
long as the finite set of particle velocities and their weights satisfy five summation conditions
that characterise symmetries for lattices.

The case for space dimension d= 1 is somehow tricky. Since the Helmholtz projection is
not available in 1D, it is hard to eliminate the term ∂xρ

ε which arises in the conservation of
momentum, i.e. the first equation of (57), and is of order O(ε−1). On the other hand, from
the conservation of mass, i.e. the second equation of (57), it always holds that the limiting
macroscopic fluid velocity u is independent of the space variable x. Hence, our main theorem
excludes the 1D case.

In addition, we characterise the 2D and 3D lattice structures that lead to the incompress-
ible Navier–Stokes equations in the hydrodynamic limit when the speed of sound is cs = 3−

1
2 .
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Figure 3. Dependence of ∥ω(T)−ωε(T)∥L2(T2
x)
/∥ω(T)∥L2(T2

x)
on ε for the DVBGK

Boltzmann and Navier–Stokes flows with the initial conditions (94) (red squares)
and (96) (blue circles). Solid lines represent the power-law fits (101).

Furthermore, by implementing the D2Q9 scheme numerically, we observe that the hydro-
dynamic limit of the DVBGK Boltzmann equation is attained at the rate O(ε2), see figure 3.
This convergence rate agrees with the theory of Junk-Yong [15] in which the hydrodynamic
limit of the same type of Boltzmann equation was rigorously justified based on the Hilbert
expansion.

However, the strict convergence of the entire sequence {uε}ε is hard to justify within
the framework of the BGL program. Although we have a strong convergence for {P(uε)}ε
(cf lemma 15), this strong convergence is guaranteed by suppressing subsequences due to
the application of the Arzelà–Ascoli theorem. Besides, the Arzelà–Ascoli theorem does not
provide an explicit convergence rate. In addition, due to the presence of a high frequency term
in (57) whose coefficient is of orderO(ε−1), we have to overcome the problem that {Q(uε)}ε
does not have enough compactness properties to converge strongly. Therefore, if one works
with the BGL program to establish the hydrodynamic limit, it is a challenging task to rigor-
ously prove the rate of convergence of the limiting sequence.

Finally, we would like to raise some open questions that deserve further consideration.
Considering the BGL program, it is interesting to ask:

• can the rate of convergence for {uε}ε be proved without considering the Hilbert expansion?

Considering the work of Junk and Yong [15], it is also interesting to pose the question:

• can the Hilbert expansion approach be made to work in higher dimensions (i.e. d⩾ 3) and
for more general lattice structures in the DVBGK Boltzmann equation (5)?

Furthermore, in realistic applications one would need to consider the motion of fluid in a
domain with a solid boundary. Hence, considering the DVBGK Boltzmann equation in such a
domain, it is worth asking:
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• how can the boundary conditions be designed such that proper fluid boundary conditions are
obtained in hydrodynamic limit?

• does the Hilbert expansion approach work when effects of boundaries are introduced?

Inmany applications of the LBM to high-Reynolds number flows, adaptive relaxation times are
used for higher-order moments to stabilise the numerical scheme. To mimic this, it is possible
to introduce a space-time dependent relaxation time to the DVBGK Boltzmann model. In this
case, the solvability of the DVBGK Boltzmann equation should be guaranteed provided the
inverse of the space-time dependent relaxation time can be controlled, e.g. ν(x, t)−1 ∈ L∞. In
the formal derivation of the Navier–Stokes equations, as long as the kinematic viscosity of
the fluid is independent of space and time, then we expect that the rigorous proof should be
analogous to the analysis presented in the present paper. Since detailed calculations are needed
to confirm this, we leave it as a problem that deserves future considerations:

• does analogous analysis hold if a space-time dependent relaxation time is considered in the
DVBGK Boltzmann equation (5)?

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

Acknowledgment

The authors are grateful to anonymous referees for their careful reading of the manuscript
and valuable comments. B P was partially supported through an NSERC (Canada) Discovery
Grant. P M thanks the Japan Society for the Promotion of Science and MITACS for award-
ing them the Mitacs-JSPS research fellowship to conduct this work. Research of T Y was
partly supported by the JSPS Grants-in-Aid for Scientific Research 24H00186. This paper was
developed during the stay of X H as a PhD student at the Graduate School of Mathematical
Sciences at the University of Tokyo.

ORCID iDs

Zhongyang Gu https://orcid.org/0000-0001-9778-235X
Xin Hu https://orcid.org/0000-0002-3151-5096
Pritpal Matharu https://orcid.org/0000-0002-4054-3638
Bartosz Protas https://orcid.org/0000-0003-3935-3148
Makiko Sasada https://orcid.org/0000-0002-4184-108X
Tsuyoshi Yoneda https://orcid.org/0000-0001-9388-0841

References

[1] Arsenio D 2012 From Boltzmann’s equation to the incompressible Navier-Stokes-Fourier system
with long-range interactions Arch. Ration. Mech. Anal. 206 367–488

[2] Ayala D and Protas B 2014 Maximum palinstrophy growth in 2D incompressible flows J. Fluid
Mech. 742 340–67

48

https://orcid.org/0000-0001-9778-235X
https://orcid.org/0000-0001-9778-235X
https://orcid.org/0000-0002-3151-5096
https://orcid.org/0000-0002-3151-5096
https://orcid.org/0000-0002-4054-3638
https://orcid.org/0000-0002-4054-3638
https://orcid.org/0000-0003-3935-3148
https://orcid.org/0000-0003-3935-3148
https://orcid.org/0000-0002-4184-108X
https://orcid.org/0000-0002-4184-108X
https://orcid.org/0000-0001-9388-0841
https://orcid.org/0000-0001-9388-0841
https://doi.org/10.1007/s00205-012-0557-9
https://doi.org/10.1007/s00205-012-0557-9
https://doi.org/10.1017/jfm.2013.685
https://doi.org/10.1017/jfm.2013.685


Nonlinearity 38 (2025) 055014 Z Gu et al

[3] Bahouri H, Chemin J-Y and Danchin R 2011 Fourier Analysis and Nonlinear Partial Differential
Equations (Grundlehren der Mathematischen Wissenschaften vol 343) (Springer)

[4] Bardos C, Golse F and Levermore C D 1993 Fluid dynamic limits of kinetic equations II: conver-
gence proof for the Boltzmann equation Commun. Pure Appl. Math. 46 667–753

[5] Bhatnagar P L Gross E P and Krook M 1954 A model for collision processes in gases. I. Small
amplitude processes in charged and neutral one-component systems Phys. Rev. 94 511–25

[6] Brezis H 2011 Functional Analysis, Sobolev Spaces and Partial Differential Equations
(Universitext) (Springer)

[7] Canuto C, Quarteroni A, Hussaini Y and Zang T A 2006 Spectral Methods (Springer)
[8] Chen S and Doolen G D 1998 Lattice Boltzmann method for fluid flows Annu. Rev. Fluid Mech.

30 329–64
[9] DiPerna R J and Lions P L 1989 On the Cauchy problem for Boltzmann equations: global existence

and weak stability Ann. Math. 130 321–66
[10] Golse F and Saint-Raymond L 2009 The incompressible Navier-Stokes limit of the Boltzmann

equation for hard cutoff potentials J. Math. Pures Appl. 91 508–52
[11] Gu Z, Hu X and Yoneda T 2024 Anomalous smoothing effect on the incompressible Navier-Stokes-

Fourier limit from Boltzmann with periodic velocity Discrete Contin. Dyn. Syst. B 30 959–1008
[12] Guo Z, Li J and Xu K 2023 Unified preserving properties of kinetic schemes Phys. Rev. E

107 025301
[13] Jiang N, Xu C-J and Zhao H 2018 Incompressible Navier-Stokes-Fourier limit from the Boltzmann

equation: classical solutions Indiana Univ. Math. J. 67 1817–55
[14] Junk M and Yang Z 2009 Convergence of lattice Boltzmann methods for Navier-Stokes flows in

periodic and bounded domains Numer. Math. 112 65–87
[15] Junk M and Yong W-A 2003 Rigorous Navier-Stokes limit of the lattice Boltzmann equation

Asymptot. Anal. 35 165–85
[16] Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G and Viggen E M 2017 The Lattice

Boltzmann Method (Graduate Texts in Physics) (Springer)
[17] Kummer E and Simonis S 2025 Nonuniqueness of lattice Boltzmann schemes derived from finite

difference methods Examples Counterexamples 7 100171
[18] Lallemand P, Luo L-S, Krafczyk M and Yong W-A 2021 The lattice Boltzmann method for nearly

incompressible flows J. Comput. Phys. 431 109713
[19] Lesieur M 1993 Turbulence in Fluids (Kluwer Academic Publishers)
[20] Levermore C D and Masmoudi N 2010 From the Boltzmann equation to an incompressible Navier-

Stokes-Fourier system Arch. Ration. Mech. Anal. 196 753–809
[21] Lions P-L andMasmoudi N 2001 From the Boltzmann equations to the equations of incompressible

fluid mechanics. I Arch. Ration. Mech. Anal. 158 173–93
[22] Liu Z and Yu H 2024 The diffusive limit of Boltzmann equation in torus Nonlinearity 37 075003
[23] Matharu P 2024 Lattice BGK Boltzmann to Navier-Stokes (Boltz2NS) (available at: https://github.

com/pipmath/Boltz2NS.git)
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