
OPTIMAL CLOSURES IN HYDRODYNAMIC

MODELS



OPTIMAL CLOSURES IN HYDRODYNAMIC MODELS

BY

PRITPAL MATHARU, B.Sc.

A Thesis Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of Masters of Science

c© Copyright by Pritpal Matharu, June 2018

All Rights Reserved



Masters of Science (2018) McMaster University

Department of Mathematics and Statistics Hamilton, Ontario, Canada

TITLE: Optimal Closures in Hydrodynamic Models

AUTHOR: Pritpal Matharu

B.Sc., Applied Mathematics and Physics (The University

of Western Ontario)

SUPERVISOR: Bartosz Protas

NUMBER OF PAGES: xiv, 83

ii



Abstract

In this work, we investigate the performance limitations characterizing certain com-

mon closure models for nonlinear models of fluid flow. The need for closures arises

when for computational reasons first-principles models, such as the Navier-Stokes

equations, are replaced with their simplified (filtered) versions such as the Large-

Eddy Simulation (LES). In the present work, we focus on a simple model problem

based on the 1D Kuramoto-Sivashinsky equation with a Smagorinsky-type eddy-

viscosity closure model. The eddy viscosity is assumed to be a function of the state

(flow) variable whose optimal functional form is determined in a very general form

in the continuous setting. It is found by solving a PDE-constrained optimization

problem in which the least-squares error between the output of the LES and the

true flow evolution is minimized with respect to the functional form of the eddy vis-

cosity. This problem is solved using a gradient-based technique utilizing a suitable

adjoint-based variational data-assimilation approach implemented in the optimize-

then-discretize setting using state-of-the-art techniques. The numerical computa-

tions are thoroughly validated. The obtained results indicate how the standard
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Smagorinsky closure model can be refined such that the corresponding LES evolu-

tion approximates more accurately the evolution of the original (unfiltered) flow.
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Chapter 1

Introduction and Problem

Statement

1.1 Motivation

Turbulent flows occur in various fields, and are an imperative and complex topic in

fluid dynamics. Understanding the complex movement of fluids is vital for various

research areas, ranging from biological modelling to engineering design models for

understanding fluid flows around objects such as cars and airplanes. The Navier-

Stokes equations are at the centre of this field and are essential for understanding fluid

flows. These equations can simply be derived from basic principles of conservation of

mass and momentum of Newtonian fluids. The Navier-Stokes equation for a steady
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(on-average) flow can be written as [9]


ρ ∂vi

∂t
+ ρ(v · ∇)vi = − ∂p

∂xi
+

∂τij
∂xj

, i, j = 1, 2, 3,

∂vi
∂xi

= 0,

(1.1)

where v = [v1, v2, v3]T is the velocity field of the fluid, p is the fluid pressure, and ρ

is the density of the fluid. In equation (1.1), Einstein’s convention of summation is

implied by repeated indices used. The viscous stresses τij are represented by

τij = 2ρνNSij = ρνN

[
∂ui
∂xj

+
∂uj
∂xi

]
, (1.2)

where νN is the viscosity and Sij is the strain-rate tensor. The Navier-Stokes equa-

tions have been used for over a century and are one of most influential partial dif-

ferential equations (PDE) in physics [7]. Although turbulent flows are extremely

complicated, these straightforward equations are able to encapsulate all scales of

the fluid flows. To date however, the Navier-Stokes equations remain part of the

unsolved Millennium Problems [11]. Due to the complexities of solving the Navier-

Stokes equations (along with other sets of equations that describe turbulent flows),

we search for a computationally efficient and mathematically accurate method to

obtain numerical solutions.

In fluid dynamics, a turbulent flow is typically described by eddies which contain

information about the flow. Assuming the turbulent flow is homogeneous with re-

spect to the spatial domain, it is often useful to describe the flow using Fourier space,

describing the flow in terms of spatial frequency (wavenumbers) instead. A certain

2
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eddy size is associated with a particular wavenumber, letting us observe a turbulent

flow in terms of a spectrum [25]. Large eddies are considered to be the scales which

dictate the main dynamics of the flow, and correspond to the low wavenumbers. The

high wavenumbers, correspond to the small eddies which contain information about

the smaller scales of the system. By considering turbulent flows in Fourier space, it

is often viewed that energy is introduced into the system at the large scales which

are considered as the energy containing eddies. Energy is then cascaded down from

the large scales to the small scales, where the small scales dissipate the energy in

the system [12]. These smaller scales of the system, also known as viscous eddies,

do not on average transfer energy up to larger scales, indicating that there are sev-

eral intermediate eddies which pass energy to the smaller dissipative eddies, which

is known as the inertial subrange. Typically for turbulent flows, there are only a

few energy containing scales, and the remaining spectrum transfers energy to the

dissipative scales.

A direct numerical simulation (DNS) is a “brute-force” method used to numerically

compute turbulent flows, which involves a wide range of spatial scales, providing an

accurate way to simulate the flows down to the smallest dissipative scale (typically

denoted as the Kolmogorov scale) [9]. As a result of computing down to the Kol-

mogorov scale, this method is extremely computationally expensive, even with the

advancement of modern super computers. In DNS, majority of computations are

spent computing the small dissipative scales. Subsequently, large eddy simulations

(LES) were developed as a computationally efficient viable substitute. LES models

3
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rely on large scales of turbulent flows containing the majority of the energy and in-

formation, which are cascaded down to the smaller scales (but again we emphasize

the smaller scales do not on average transfer energy up to the large scales). Conse-

quently, in LES models, large eddies are computed exactly without the presence of

the small scales. This can be considered as an averaging process, where the mean

velocity is separated from the turbulent fluctuations. Performing time-averaging,

denoted by · (bar), to the Navier-Stokes, we obtain [9]

ρ(v · ∇)vi = − ∂p

∂xi
+

∂

∂xj

[
τ ij − ρv′iv′j

]
,

where ρv′iv
′
j can be interpreted as an additional “force” due to turbulent fluctua-

tions. This term is known as the Reynolds stresses τRij = −ρv′iv′j, which acts like

an additional stress term induced from the turbulent fluctuations. This result is the

time-averaged equation

ρ(v · ∇)vi = − ∂p

∂xi
+

∂

∂xj

[
τ ij + τRij

]
, (1.3)

When given a sufficient number of boundary conditions along with the equation in

(1.1) to formulate a well-determined system, (1.3) introduces an additional unknown.

The introduction of the Reynolds stresses causes the system to have more unknowns

than equations, known as the “closure problem”. This problem consists of expressing

the Reynold stresses, defined in terms of quantities which are not computed (v′) in

terms of quantities which are computed (v). The nonlinear nature of the equations

used to describe fluid flows, along with this filtering (averaging) process results in a

4



M.Sc. Thesis – Pritpal Matharu McMaster University – Mathematics and Statistics

sub-grid parameterization where interactions between the small and the large scales

need to be modelled.

1.2 Smagorinsky Model

Due to the nonlinear terms in the Navier-Stokes equations, this closure problem

arises when filtering or statistically averaging, such that there are more unknowns

than there are equations. Closure models are a common method to resolve this issue.

The Smagorinsky model [23] and many of its modifications have been widely used

as a closure model to compute LES, which include use in the context of formulating

reduced-order models for Navier-Stokes [20] as well as applying this to other turbulent

equations [17]. The Smagorinsky model is known as being an eddy viscosity type

closure model, assumes the eddy viscosity is dependent upon the rate of the strain

tensor computed for the averaged field. The filtered version of the Navier-Stokes

equation can be written with an eddy viscosity closure as

∂vi
∂t

+
∂

∂xj
( vivj ) = −1

ρ

∂p

∂xi
+ 2

∂

∂xj

[
(νN + νR)Sij

]
, i, j = 1, 2, 3, (1.4)

where using a Smagorinsky model would prescribe the eddy viscosity νR as [9], [18]

νR = C2
sL

2
(
2SijSij

)1/2
. (1.5)

5
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The eddy viscosity is also comprised of the filter width L, and an adjustable pa-

rameter Cs called the Smagorinsky coefficient. This eddy viscosity is dependent on

the resolved velocity field, in particular the velocity gradients, but is intended to

characterize the unresolved subgrid scales. Although this model is rather simple,

it is extremely popular and is used as the basis of several more advanced models.

It should be noted that the eddy viscosity is artificially introduced, and is added

to the viscosity from the initial set of equations. In the original formulation the

Smagorinsky coefficient was taken as a constant, but methods have been introduced

to dynamically compute this coefficient based on the resolved scales (known as Ger-

mano models), with the preferred form proposed by Lilly [16]. The Smagorinsky

model also has major flaws, which include being too dissipative near walls [9]. An-

other major drawback of the Smagorinsky model is that it assumes the eddy viscosity

is zero if and only if the velocity gradient is zero and the eddy viscosity is positive

elsewhere, implying the closure term will be strictly dissipative [21]. Although the

Smagorinsky model is extremely popular, the problems of its calibration and valida-

tion have been traditionally dominated by empiricism, and the goal of this thesis is

to introduce a degree of mathematical rigour to this field. More precisely, we will de-

velop an optimization-based approach that will allow one to assess the fundamental

possibilities and performance limitations inherent in this class of closure models. By

relying on rigorous methods of mathematical optimization, this research will provide

a systematic and objective assessment of the fundamental opportunities and limita-

tions inherent in the Smagorinsky model. As such, it will therefore offer guidance to

the LES community in their development of closure models.

6
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1.3 Kuramoto-Sivashinsky Equation

Due to the complexity and high computational expense of the Navier-Stokes equa-

tions, we shall consider a one-dimensional model. The simple system we shall consider

is the Kuramoto-Sivashinsky equation with periodic boundary conditions



∂w(t,x)
∂t

+ ν1
∂4w(t,x)
∂x4

+ ν2

[
∂2w(t,x)
∂x2

+ w(t, x) ∂w(t,x)
∂x

]
= 0, (t, x) ∈ [0, T ]× Ω,

∂(i)w
∂x(i)

(t, 0) = ∂(i)w
∂x(i)

(t, 2π), i = 0, . . . , 3,

w(0, x) = w0(x),

(1.6)

where Ω = (0, 2π), T > 0 is some time for which the system is solved over, ν1, ν2 ∈ R+

are constants, and w0(x) is an appropriate initial condition for the system.

Originally this equation was proposed as a model for instabilities on interfaces and

flame fronts [22], and “phase turbulence” in chemical reactions [15]. However, in

this investigation we are not concerned with the application of these equations or

what they model, and more interested in the dynamics of the equation and its turbu-

lent/ chaotic behaviour as a “one-dimensional” turbulent system. More importantly,

Kuramoto-Sivashinsky equation shares some general features with the Navier-Stokes

equations. In particular, the second-order derivative term which is a destabilizing

energy source, responsible for unstable large scales. Solutions to the Kuramoto-

Sivashinsky equation sustain their behaviour due to this negative diffusion term.

The fourth-order derivative is a stabilizing energy sink, dissipating energy at the

7
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small scales. Lastly, the nonlinear term responsible for the turbulent behaviour,

transferring energy from large scales to small scales. Although it may be difficult to

exactly define what “turbulent behaviour” is [9], it is often agreed upon that a tur-

bulent flow has multiscale features, chaotic behaviour, and/ or is spatio-temporally

complex. Kuramoto-Sivashinsky contains all these features, and the constants ν1, ν2

can be used to control the turbulent behaviour (which shall be further discussed in

Chapter 3). A schematic of a typical spectrum of Kuramoto-Sivashinsky is given

in Figure 1.1, where the ranges in which the energy is introduced into the system

(large eddies), energy is cascaded from large to small scales (inertial subrange), and

energy is dissipated (small eddies) are indicated. Typically viscous Burgers equa-

tion [4] is considered as the one dimensional analogous version Navier-Stokes, but

Burgers equation is simply the heat equation “in disguise” by using the Cole-Hopf

transformation [5], [13]. The high order derivatives in Kuramoto-Sivashinsky also

adds additional mathematical and numerical complexity, which makes it a more in-

teresting problem to investigate.

8
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Figure 1.1: A schematic of a typical Fourier spectrum of a solution of the Kuramoto-
Sivashinsky, representing the energy cascade from large scales to smaller scales (since
eddies are difficult to visualize in one-dimension, we use Fourier modes). The de-
scription of numerical methods and parameters to generate this plot are given below
in Chapters 3, 4, and 5.

1.4 Main Contributions and Outline of Thesis

In this thesis, we focus upon determining the optimal form of the closure term, in

particular finding the optimal eddy viscosity, for an LES system. The main contri-

butions of this work are

• development and validation of a general optimization-based approach to deter-

mination of optimal closures in hydrodynamic models,

• insights about the “best” closure form and its fundamental performance limi-

tations, and

9
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• determine whether or not the Smagorinsky hypothesis is valid to be used for

LES models.

The structure of this thesis is as follows: in Chapter 2 we construct an LES model for

the Kuramoto-Sivashinsky equation using the Smagorinsky hypothesis. We then for-

mulate the optimization-based approach for determining the optimal eddy viscosity.

Chapter 3 describes the physical parameters used in the current investigation and the

operators we shall use to observe the solutions. Chapter 4 is devoted for describing

the numerical approach used to numerically discretize and address the optimization

problem, in a computationally efficient and accurate method. In Chapter 5, we de-

scribe the diagnostic quantities used to compare solutions and key results of this

work. In Chapter 6 we discuss the results obtained. We conclude with a summary

of the thesis and a discussion of future research directions in Chapter 7.

10



Chapter 2

Optimal Closures

In this Chapter, we formulate an LES system for the Kuramoto-Sivashinsky equation

where the closure uses a Smagorinsky-type eddy viscosity model. In order to deter-

mine the optimal form of the eddy viscosity, we formulate this as an optimization

problem. This optimization procedure is formulated in a very general (continuous)

setting, and a gradient used to determine the optimal eddy viscosity is derived. Fi-

nally, we ensure the gradient to be used is sufficiently smooth, such that the eddy

viscosity will also remain sufficiently smooth.

2.1 LES for Kuramoto-Sivashinsky Equation

To determine an optimal closure for (1.6), we must first define the filtering operation

for which scales are to be resolved and the scales to be truncated. We shall use a

simple box filter, as was used in [8]. That is, for some function f , we denote the

11
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filtered function as f̃ , defined by

f̃(x) =

ˆ ∞
−∞

G(x− ξ)f(ξ) dξ, (2.1)

where G is a filter kernel. The expression in (2.1) can be simplified by considering

the filtering process in Fourier space. Denoting f̂ and Ĝ to be the Fourier transforms

of f and G, respectively, the convolution in (2.1) simplifies to a product in Fourier

space

ˆ̃f(k) = Ĝ(k) f̂(k).

Choosing the filter kernel G as a sharp Fourier cutoff filter (box filter), we obtain

the low-pass filter

Ĝ(k) =


1, |k| ≤ kmax,

0, otherwise,

(2.2)

where kmax is the maximum resolved wavenumber to be computed. This filtering is

applied to (1.6), to derive the filtered version of the Kuramoto-Sivashinsky equation

∂w̃

∂t
+ ν1

∂4w̃

∂x4
+ ν2

[∂2w̃

∂x2
+

1

2

∂w̃w

∂x

]
= 0.

Since the above equation is dependent upon w, which is unknown in the LES system,

we shall add a nonlinear term that is dependent on the filtered field w̃. Adding this

12
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nonlinear term to both sides of the equation

∂w̃

∂t
+ ν1

∂4w̃

∂x4
+ ν2

[∂2w̃

∂x2
+

1

2

∂w̃w

∂x
+

1

2

∂˜̃ww̃
∂x

]
=
ν2

2

∂˜̃ww̃
∂x

,

we can write the left side of the equation strictly in terms of the filtered field w̃

∂w̃

∂t
+ ν1

∂4w̃

∂x4
+ ν2

[∂2w̃

∂x2
+

1

2

∂˜̃ww̃
∂x

]
=
ν2

2

[∂˜̃ww̃
∂x
− ∂w̃w

∂x

]
.

Thus, the filtered equation can be represented as,

∂w̃

∂t
+ ν1

∂4w̃

∂x4
+ ν2

[∂2w̃

∂x2
+

1

2

∂(˜̃ww̃)

∂x

]
= −M(w), (2.3)

where M(w) is the term that compensates for the absence of the small scales. The

term represents the “subgrid stresses”, τ , with the relation

M(w) =
∂τ

∂x
,

τ :=
ν2

2

[
w̃w − ˜̃ww̃ ]. (2.4)

We shall emphasize that M(w) is dependent on quantities (w) which are unavail-

able in the LES system of the Kuramoto-Sivashinsky equation, thus M(w) must be

modelled as a function of strictly w̃. We shall be focused upon constructing an op-

timal model term, in order to approximate the solution of the unfiltered solution of

Kuramoto-Sivashinsky, satisfying the expression given in (1.6).

13
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In order to determine the optimal closure form, we shall choose a typical closure hy-

pothesis. In particular, we will use the Smagorinsky model as an ansatz to determine

the optimal closure term which relies upon an eddy viscosity term [9]. In this inves-

tigation, the problem that we shall be concerned about is determining an optimal

eddy viscosity such that the solutions of the filtered LES match the “exact” (DNS)

solution. This procedure will also act as a validation of Smagorinsky’s hypothesis for

LES closure models, i.e. we address the questions: with the Smagorinsky hypothesis,

in principle how well can a LES reconstruct a flow? What is the “best” LES that

can be constructed, using a Smagorinsky closure model?

Regarding the construction of the model term, the Smagorinsky model relies on the

energy of eddies, so this causes the eddy viscosity to be dependent on the gradient of

the state variable (velocity field) which forms an additional nonlinearity. To form an

appropriate Smagorinsky-type eddy viscosity, we shall formulate the eddy viscosity,

νe, in a general framework such that

νe := νe

((∂w̃
∂x

)2)
. (2.5)

Here we use a dependence on the gradient of the velocity field squared, which is simi-

lar to the dependence of the eddy viscosity on strain-rate tensor for the Smagorinsky

model for the Navier-Stokes equation. We also use the square of the velocity gra-

dient field to ensure the eddy viscosity is remains continuous. To construct the

closure and validate the Smagorinsky model, we wish to investigate the following

inverse problem: Given time-dependent measurements {mi(t)}Ni=1 of the unfiltered

Kuramoto-Sivashinsky flow (i.e. DNS of (1.6)), at certain points in space {xi}Ni=1,

14
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within a time-window t ∈ [0, T ], we wish to determine an optimal eddy viscosity

with the form given in (2.5), such that the solutions to the LES (given in (2.8)) best

fit the measurements from the unfiltered flow.

Using the eddy viscosity relation in (2.5), we can then use the eddy viscosity to

estimate the subgrid stresses (2.4)

τ ≈ τ̃ = νe

((∂w̃
∂x

)2) ∂3w̃

∂x3
, (2.6)

giving us the closure for the term M , cf. (2.4)

M(w) ≈ M̃ =
∂

∂x

[
νe

((∂w̃
∂x

)2) ∂3w̃

∂x3

]
. (2.7)

For the Kuramoto-Sivashinsky equation, we know the fourth-order term is dissipa-

tive. So, for the system given in (1.6) the energy is dissipated at the smaller scales,

which are no longer resolved in the filtered equation. As a result, the closure term

must act as an additional dissipation term, maintaining the same dissipation rate as

in the unfiltered Kuramoto-Sivashinsky equation. Thus, this is the reason we use the

particular form for the model term, given in (2.7).

Using the model closure term (2.7), we obtain the following LES system

∂w̃

∂t
+ ν1

∂4w̃

∂x4
+ ν2

[∂2w̃

∂x2
+

1

2

∂(w̃w̃)

∂x

]
= − ∂

∂x

[
νe

((∂w̃
∂x

)2) ∂3w̃

∂x3

]
,

∂(i)w̃

∂x(i)
(t, 0) =

∂(i)w̃

∂x(i)
(t, 2π), i = 0, . . . , 3, (2.8)

w̃(0, x) = w̃0(x).

15
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Now, we must define and note

• [α, β] :=

[
min

((
∂w̃
∂x

)2
)
,max

((
∂w̃
∂x

)2
)]

which gives a range spanned by the

square of the velocity gradient field of (2.8). We shall denote I := [α, β] as the

“identifiability interval”,

• L := [a, b], where a < α and b > β; this is the entire domain on which we are

required to determine the eddy viscosity; we note that the interval L contains

values which are generally outside of I (hence, I ⊂ L and L \ I 6= ∅).

Since we are dealing with real valued-solutions and we are considering the square of

the velocity gradient field, a natural minimum value is to set a = 0.

2.2 Optimization Approach to finding Eddy Vis-

cosity

For our eddy viscosity νe, we must assume some smoothness properties

νe

((∂w̃
∂x

)2)
piecewise C3 on L.

Thus, the derivatives

d(i)
(
νe
((

∂w̃
∂x

)2))
d((∂w̃

∂x
)2)(i)

, i = 0, . . . , 3, (2.9)

are at least piecewise continuous on L. Since the eddy viscosity is dependent on the

velocity gradient field squared, we shall now show νe is then also continuous with
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respect to x. We require this property to make the optimization approach introduced

below well defined. To begin, we shall note that the Kuramoto-Sivashinsky equation

gives smooth unique solutions which are continuously dependent on the initial con-

dition w0(x) [24]. Now, determining the continuity of the partial derivative of νe,

with respect to x

∂
(
νe
((

∂w̃
∂x

)2))
∂x

= 2
d
(
νe
((

∂w̃
∂x

)2))
d
((

∂w̃
∂x

)2) ∂2w̃

∂x2

∂w̃

∂x
.

Since we begin with an appropriate initial condition w0(x) (given in (1.6)), this shall

give us piecewise continuous first and second derivatives (with respect to x) of the

solution of (2.8). Thus, using (2.9) and that the x-derivatives of the solution are also

continuous, we shall conclude that the derivative of νe with respect to x is continuous.

Similarly,

∂2
(
νe
((

∂w̃
∂x

)2))
∂x2

= 2
d2
(
νe
((

∂w̃
∂x

)2))
d
((

∂w̃
∂x

)2)2

∂w̃

∂x

∂2w̃

∂x2
+

2
d
(
νe
((

∂w̃
∂x

)2))
d
((

∂w̃
∂x

)2) [(∂2w̃

∂x2

)2

+
∂w̃

∂x

∂3w̃

∂x3

]
.

Again, from (2.9) along with the first, second, and third derivatives (with respect to

x) of the solutions to (2.8) being piecewise continuous, then the second derivative of

νe with respect to x is also continuous. Using similar arguments as above, we can

conclude

∂(i)
(
νe
((

∂w̃
∂x

)2))
∂x(i)

, i = 0, . . . , 3, (2.10)

17
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are all piecewise continuous on Ω. As a result, we retain the properties of the periodic

boundary conditions

∂(i)

∂x(i)

(
νe

((∂w̃
∂x

)2)) ∣∣∣∣
x=0

=
∂(i)

∂x(i)

(
νe

((∂w̃
∂x

)2)) ∣∣∣∣
x=2π

, i = 0, . . . , 3. (2.11)

We wish to find the optimal eddy viscosity, for a given flow with the measurements

{mi(t)}Ni=1. In order to determine the optimal model term, we shall reformulate

this problem as a least-squares minimization problem, in which we define the cost

functional

J (νe) =
1

2

ˆ T

0

N∑
i=1

[mi(t)−Hiw̃(t, x; νe)]
2 dt, (2.12)

where N is the number of observation points, Hi, i = 1, . . . , N are operators which

shall determine how we observe the solutions, and mi(t) are the measurements of

our target field that we wish to reconstruct. We shall choose the operators Hi, i =

1, . . . , N , such that

Hi : L2(Ω) −→ R, i = 1, . . . , N.

Thus, we wish to find the eddy viscosity ν̌ such that

ν̌ = arg min
νe∈H3(L)

J (νe). (2.13)

To find the local minimizer of (2.12), we shall use a gradient-based optimization

method. The optimal ν̌ can be computed using a gradient descent algorithm as
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ν̌ = lim
n→∞

ν(n), where


ν(n+1) = ν(n) − τ (n)∇νeJ (ν(n)), n = 1, 2, . . . ,

ν(1) = ν0,

(2.14)

in which ∇νeJ (νe) is the gradient of the cost functional J (νe) with respect to the

control variable νe, τ
(n) is the n-iteration step length along the descent direction,

and ν0 is the initial guess for the eddy viscosity (which should be consistent with the

Smagorinsky type ansatz).

2.3 Adjoint-Based Gradients

A key element of the minimization algorithm (2.14) is the gradient ∇νeJ (νe). In

order to determine it, we shall take the first variation of the functional in (2.12) with

respect to νe. Computing the Gâteaux (directional) differential of the cost functional

in (2.12)

J ′(νe; ν ′) = lim
ε→0

J (νe + εν ′)− J (νe)

ε
,

=
d

dε
J
(
νe + εν ′

)∣∣∣
ε=0
,

=

ˆ T

0

N∑
i=1

[Hiw̃(t, x; νe)−mi(t)]Hiu
′(t, x; νe, ν

′) dt, (2.15)

where the perturbation variable u′(t, x; νe, ν
′) satisfies the perturbation system ob-

tained from (2.8), and the perturbation variable ν ′
((

∂w̃
∂x

)2)
is the perturbation of
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νe. The (local) minimizer of (2.12) requires the directional derivative of the cost

functional to vanish for all perturbations ν ′, that is,

∀
ν′∈Λ(L)

J ′(ν̌; ν ′) = 0, (2.16)

where Λ is a suitable Hilbert space, to be specified below. For all other values of νe,

we require a gradient with respect to νe in order to obtain the local minimizer ν̌. To

extract an expression for the gradient, we utilize the Riesz representation theorem

and the fact that this is a directional derivative to obtain

J ′(νe; ν ′) =
〈
∇νeJ , ν ′

〉
Λ(L)

, (2.17)

where 〈·, ·〉Λ is an inner product in the suitable Hilbert space Λ. To obtain the Riesz

form in (2.17), we shall first note in (2.15) the multiplication between the two terms

can be considered as an inner product over the reals, 〈·, ·〉R, such that

J ′(νe; ν ′) =

ˆ T

0

N∑
i=1

〈[Hiw̃(t, x; νe)−mi(t)], Hiu
′(t, x; νe, ν

′)〉R dt. (2.18)

Written in terms of inner products, we can now use the suitable adjoint of the

operators Hi, i = 1, . . . , N , obtaining equivalent the inner product expressions for
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(2.18)

J ′(νe; ν ′) =

ˆ T

0

N∑
i=1

〈[Hiw̃(t, x; νe)−mi(t)], Hiu
′(t, x; νe, ν

′)〉R dt,

=

ˆ T

0

N∑
i=1

〈H∗i [Hiw̃(t, x; νe)−mi(t)], u
′(t, x; νe, ν

′)〉L2(0,2π) dt,

=

ˆ T

0

ˆ 2π

0

N∑
i=1

H∗i [Hiw̃(t, x; νe)−mi(t)]u
′(t, x; νe, ν

′) dx dt, (2.19)

where H∗i , i = 1, . . . , N , are the adjoint operators of the operators Hi, i = 1, . . . , N .

It is not yet possible to extract an expression for the gradient ∇νeJ (νe) from the

differential (2.19). The expression in (2.19) must hold for arbitrary perturbations

u′(t, x; νe, ν
′), which would require infinitely many test functions. Invoking the Riesz

representation theorem to obtain (2.17), allows us to extract an expression for the

gradient with respect to νe, independent of the arbitrary directions ν ′(
(
∂w̃
∂x

)2
). We

shall note that the perturbation variable ν ′ is hidden in the perturbation system

that u′(t, x; νe, ν
′), and the expression in (2.19) can be transformed to the Riesz form

(2.17). Since the Riesz form given in (2.17) is not consistent the functional expression

given in (2.19), we must prove that they are indeed equivalent. In the following

theorem, we shall prove this and extract the expression for the gradient given in

(2.17). This approach was initially formulated in [3], [2], and suitably modified for

our current investigation.

Theorem 2.1. Let ν ′ ∈ H3(L). Then the directional differential in (2.19) has the
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following Riesz representation form

J ′(ν; ν ′) =

ˆ b

s=a

ˆ T

t=0

ˆ 2π

x=0

∂ũ∗(t, x)

∂x
δ
((∂ũ(t, x)

∂x

)2

− s
) ∂2

∂x2

(√
(s)
)
ν ′(s) dx dt ds,

(2.20)

where δ(·) denotes the Dirac delta function and the adjoint variable ũ∗ is defined as

the solution to the system

− ∂ũ∗

∂t
+ ν1

∂4ũ∗

∂x4
+ ν2

[∂2ũ∗

∂x2
− ũ∂ũ

∗

∂x

]
+

∂

∂x

[
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂3ũ

∂x3

∂ũ∗

∂x

]
+

∂3

∂x3

[
ν
∂ũ∗

∂x

]
=

N∑
i=1

H∗i [Hiũ−mi],

∂(i)ũ∗

∂x(i)
(t, 0) =

∂(i)ũ∗

∂x(i)
(t, 2π), i = 0, . . . , 3,

ũ∗(T, x) = 0. (2.21)

Proof. First, we must determine the perturbation of system (2.8), whose solution is
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used in (2.19). This is done by perturbing the state variable w̃ to obtain

w̃ = ũ+ εu′ +O(ε2), (2.22a)

∂w̃

∂x
=
∂ũ

∂x
+ ε

∂u′

∂x
+O(ε2), (2.22b)

w̃ w̃ = (u+ εu′) (u+ εu′) +O(ε2),

= ũ2 + 2εũu′ +O(ε2), (2.22c)(∂w̃
∂x

)2

=
(∂ũ
∂x

+ ε
∂u′

∂x

)2

+O(ε2),

=
(∂ũ
∂x

)2

+ 2ε
∂ũ

∂x

∂u′

∂x
+O(ε2), (2.22d)

νe = ν + εν ′ +O(ε2). (2.22e)

Since the viscosity term in (2.22e) depends on the state variable, let us expand the

first term of the eddy viscosity separately in order to account for that. Determining

the first term in (2.22e)

ν
((∂w̃

∂x

)2)
= ν

((∂ũ
∂x

+ ε
∂u′

∂x

)2)
+O(ε2),

= ν
((∂ũ

∂x

)2

+ 2ε
∂ũ

∂x

∂u′

∂x

)
+O(ε2)→ Taylor Expand,

= ν
((∂ũ

∂x

)2)
+ 2ε

d
(
ν
((

∂ũ
∂x

)2))
d
((

∂ũ
∂x

)2) ∂ũ

∂x

∂u′

∂x
+O(ε2). (2.23)

Now we substitute (2.23) back into the eddy viscosity in (2.22e), to obtain the full
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expression for the perturbation of the eddy viscosity

νe

((∂w̃
∂x

)2)
= ν

((∂w̃
∂x

)2)
+ εν ′

((∂w̃
∂x

)2)
+O(ε2),

= ν
((∂ũ

∂x

)2)
+ 2ε

d
(
ν
((

∂ũ
∂x

)2))
d
((

∂ũ
∂x

)2) ∂ũ

∂x

∂u′

∂x
+ εν ′

((∂w̃
∂x

)2)
+O(ε2). (2.24)

Using these perturbations, we can calculate the nonlinear model term, given in (2.7),

for the perturbed version of (2.8), truncating at O(ε2)

νe

((∂w̃
∂x

)2) ∂3w̃

∂x3
=
(
ν + 2ε

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ εν ′

)(∂3ũ

∂x3
+ ε

∂3u′

∂x3

)
+O(ε2),

= ν
∂3ũ

∂x3
+ ε
[
2

dν

d
((

∂ũ
∂x

)2) ∂u′∂x

∂ũ

∂x

∂3ũ

∂x3
+ ν ′

∂3ũ

∂x3
+ ν

∂3u′

∂x3

]
+O(ε2). (2.25)

Substituting the expressions in (2.22) and (2.25) into (2.8), and collecting to the

order of O(ε), we obtain the perturbation system

∂u′

∂t
+ ν1

∂4u′

∂x4
+ ν2

[∂2u′

∂x2
+
∂(ũu′)

∂x

]
= − ∂

∂x

[(
2

dν

d
((

∂ũ
∂x

)2
) ∂ũ
∂x

∂u′

∂x
+ ν ′

)∂3ũ

∂x3
+ ν

∂3u′

∂x3

]
,

∂(i)u′

∂x(i)
(t, 0) =

∂(i)u′

∂x(i)
(t, 2π), i = 0, . . . , 3,

u′(0, x) = 0. (2.26)

We shall note that w̃ = ũ at leading order, so we now adopt the convection that

ũ = w̃, representing the LES field. Similarly, νe
((

∂w̃
∂x

)2)
= ν

((
∂w̃
∂x

)2)
at leading

order, so we denote ν
((

∂ũ
∂x

)2)
= νe

((
∂w̃
∂x

)2)
as the eddy viscosity.
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Now we integrate (2.26) against the adjoint field ũ∗ over space and time

ˆ T

0

ˆ 2π

0

[
∂u′

∂t
+ ν1

∂4u′

∂x4
+ ν2

[∂2u′

∂x2
+
∂(ũ u′)

∂x

]]
ũ∗ dx dt

= −
ˆ T

0

ˆ 2π

0

[
∂

∂x

[ (
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ ν ′

) ∂3ũ

∂x3
+ ν

∂3u′

∂x3

]]
ũ∗ dx dt. (2.27)

Let us consider the second term in (2.27) by using integration by parts with respect

to space

−
ˆ T

0

ˆ 2π

0

[
∂

∂x

[ (
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ ν ′

) ∂3ũ

∂x3
+ ν

∂3u′

∂x3

]]
ũ∗ dx dt

=

ˆ T

0

[
−
[ (

2
dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ ν ′

) ∂3ũ

∂x3
ũ∗ + ν

∂3u′

∂x3
ũ∗
]∣∣∣2π
x=0

+

ˆ 2π

0

[ (
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ ν ′

) ∂3ũ

∂x3
+ ν

∂3u′

∂x3

] ∂ũ∗
∂x

dx

]
dt.

From (2.11) we know that ν is periodic in x, thus we also know that its perturbation

ν ′ is also periodic in x. Using this fact, as well as (2.8), (2.11), (2.26), and (2.21),

the boundary term vanishes and we are left with

−
ˆ T

0

ˆ 2π

0

[
∂

∂x

[ (
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ ν ′

) ∂3ũ

∂x3
+ ν

∂3u′

∂x3

]]
ũ∗ dx dt

=

ˆ T

0

ˆ 2π

0

[ (
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ ν ′

) ∂3ũ

∂x3
+ ν

∂3u′

∂x3

] ∂ũ∗
∂x

dx dt. (2.28)

Substituting (2.28) back into (2.27), we obtain a slightly simpler relation to work
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with, namely,

ˆ T

0

ˆ 2π

0

[
∂u′

∂t
+ ν1

∂4u′

∂x4
+ ν2

[∂2u′

∂x2
+
∂(ũu′)

∂x

]]
ũ∗ dx dt

=

ˆ T

0

ˆ 2π

0

[ (
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x
+ ν ′

) ∂3ũ

∂x3
+ ν

∂3u′

∂x3

] ∂ũ∗
∂x

dx dt. (2.29)

Now, we can rearrange (2.29) such that the terms containing the perturbation vari-

able u′ are on the left-hand side (LHS) and terms containing the perturbation variable

ν ′ are on the right-hand side (RHS). Doing this, we obtain

ˆ T

0

ˆ 2π

0

[
∂u′

∂t
+ ν1

∂4u′

∂x4
+ ν2

[∂2u′

∂x2
+
∂(ũu′)

∂x

]]
ũ∗

−
[

2
dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x

∂3ũ

∂x3
+ ν

∂3u′

∂x3

]
∂ũ∗

∂x
dx dt

=

ˆ T

0

ˆ 2π

0

∂ũ∗

∂x

∂3ũ

∂x3
ν ′ dx dt. (2.30)

Now, we can perform integration by parts individually on each of the terms on the

LHS of (2.30) to extract all the terms with u′. After performing integration by parts,

while using the relations from (2.11), the boundary conditions, and the time domain
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conditions from (2.8), (2.26), and (2.21), we obtain the following relation

ˆ T

0

ˆ 2π

0

[
∂u′

∂t
+ ν1

∂4u′

∂x4
+ ν2

[∂2u′

∂x2
+
∂(ũ u′)

∂x

]]
ũ∗

−
[

2
dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂u′∂x

∂3ũ

∂x3
+ ν

∂3u′

∂x3

]
∂ũ∗

∂x
dx dt

=

ˆ T

0

ˆ 2π

0

[
− ∂ũ∗

∂t
+ ν1

∂4ũ∗

∂x4
+ ν2

[∂2ũ∗

∂x2
− ũ∂ũ

∗

∂x

]
+

∂

∂x

[
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂3ũ

∂x3

∂ũ∗

∂x

]
+

∂3

∂x3

[
ν
∂ũ∗

∂x

]]
u′ dx dt

=

ˆ T

0

ˆ 2π

0

∂ũ∗

∂x

∂3ũ

∂x3
ν ′ dx dt.

Using the expression for the adjoint system in (2.21) and the expression for the di-

rectional differential in (2.19), we obtain

ˆ T

0

ˆ 2π

0

[
− ∂ũ∗

∂t
+ ν1

∂4ũ∗

∂x4
+ ν2

[∂2ũ∗

∂x2
− ũ∂ũ

∗

∂x

]
+

∂

∂x

[
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂3ũ

∂x3

∂ũ∗

∂x

]
+

∂3

∂x3

[
ν
∂ũ∗

∂x

]]
u′ dx dt

=

ˆ T

0

ˆ 2π

0

[ N∑
i=1

H∗i [Hiũ−mi]

]
u′dxdt =

ˆ T

0

ˆ 2π

0

∂ũ∗

∂x

∂3ũ

∂x3
ν ′ dx dt,

=J ′(ν; ν ′). (2.31)

Note the last expression given in (2.31) has integration over space and time. In order

to put the expression into the Riesz form given in (2.17), we require the integration

to be over the state variable s = (∂ũ
∂x

)2. To do this, let us introduce the following

27



M.Sc. Thesis – Pritpal Matharu McMaster University – Mathematics and Statistics

representations

h
((∂ũ

∂x

)2)
:=

∂3ũ

∂x3
,

=
∂2

∂x2

(∂ũ
∂x

)
,

=
∂2

∂x2

(√(∂ũ
∂x

)2)
, (2.32)

f
((∂ũ

∂x

)2)
=

ˆ ∞
−∞

δ
((∂ũ

∂x

)2

− s
)
f(s)ds, (2.33)

where δ is the Dirac delta function. We have performed the change in (2.32) to simply

show that we can write the third derivative as a function of the state variable. The

transformation in (2.33) is a utilization of the “sifting” property of the Dirac delta

function, to introduce the integration over the state variable. Now, we can let f be

equal to the terms in (2.31) that depend on the state variable

f
((∂ũ

∂x

)2)
=
∂3ũ

∂x3
ν ′
((∂ũ

∂x

)2)
,

= h
((∂ũ

∂x

)2)
ν ′
((∂ũ

∂x

)2)
,

=

ˆ ∞
−∞

δ
((∂ũ

∂x

)2

− s
)
h(s) ν ′(s) ds. (2.34)
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Now we use (2.34) in (2.31)

J ′(ν; ν ′) =

ˆ T

0

ˆ 2π

0

∂ũ∗

∂x

∂3ũ

∂x3
ν ′
((∂ũ

∂x

)2)
dx dt,

=

ˆ T

0

ˆ 2π

0

∂ũ∗

∂x

ˆ b

a

δ
((∂ũ

∂x

)2

− s
)
h(s) ν ′(s) ds dx dt,

=

ˆ T

0

ˆ 2π

0

ˆ b

a

∂ũ∗

∂x
δ
((∂ũ

∂x

)2

− s
)
h(s) ν ′(s) ds dx dt.

Using Fubini’s theorem to swap the order of integration,

J ′(ν; ν ′) =

ˆ T

0

ˆ 2π

0

ˆ b

a

∂ũ∗

∂x
δ
((∂ũ

∂x

)2

− s
)
h(s) ν ′(s) ds dx dt,

=

ˆ b

a

ˆ T

0

ˆ 2π

0

∂ũ∗

∂x
δ
((∂ũ

∂x

)2

− s
)
h(s) ν ′(s) dx dt ds,

=

ˆ b

s=a

ˆ T

t=0

ˆ 2π

x=0

∂ũ∗(t, x)

∂x
δ
((∂ũ(t, x)

∂x

)2

− s
) ∂2

∂x2

(√
(s)
)
ν ′(s) dx dt ds,

(2.35)

= 〈∇νJ , ν ′〉L2(L),

we obtain the Riesz representation form given in (2.20) and the differential of the

cost functional in the Riesz form given in (2.17).

Now we have the differential of the cost functional in the Riesz representation

form so that we can determine the cost functional gradients in different Hilbert spaces
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Λ. Currently, we have the simple form of the L2(L) gradient

∇L2

ν J (s) =

ˆ T

t=0

ˆ 2π

x=0

∂ũ∗(t, x)

∂x
δ
((∂ũ(t, x)

∂x

)2

− s
) ∂2

∂x2

(√
(s)
)
dx dt,

=

ˆ T

t=0

ˆ 2π

x=0

∂ũ∗(t, x)

∂x
δ
((∂ũ(t, x)

∂x

)2

− s
) ∂3ũ(t, x)

∂x3
dx dt. (2.36)

We can simplify this gradient expression so that it is easier to evaluate by using the

Heaviside function

χ[a,b](s) =


1, s ∈ [a, b],

0, s /∈ [a, b],

instead of the Dirac Delta distribution. We shall write

δ
((∂ũ(t, x)

∂x

)2

− s
)

= − d

ds
χ

[α,(
∂ũ(t,x)

∂x
)2]

(s). (2.37)

Then, using (2.37) in (2.36) we can further simplify the gradient expression

∇L2

ν J (s) =

ˆ T

t=0

ˆ 2π

x=0

∂ũ∗(t, x)

∂x
δ
((∂ũ(t, x)

∂x

)2

− s
) ∂2

∂x2

(√
(s)
)
dx dt,

=

ˆ T

t=0

ˆ 2π

x=0

∂ũ∗(t, x)

∂x
δ
((∂ũ(t, x)

∂x

)2

− s
) ∂3ũ(t, x)

∂x3
dx dt,

=

ˆ T

t=0

ˆ 2π

x=0

− d

ds
χ

[α,(
∂ũ(t,x)

∂x
)2]

(s)
∂ũ∗(t, x)

∂x

∂3ũ(t, x)

∂x3
dx dt,

= − d

ds

ˆ T

t=0

ˆ 2π

x=0

χ
[α,(

∂ũ(t,x)
∂x

)2]
(s)

∂ũ∗(t, x)

∂x

∂3ũ(t, x)

∂x3
dx dt. (2.38)

Since we require the eddy viscosity to be ν ∈ H3(L), we need the gradients to be
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sufficiently smooth for the eddy viscosity to have this level of smoothness. Thus, the

L2 gradient is not sufficiently smooth to use. Instead, we shall use the Sobolev space

H3, to ensure regularity of the gradients and of the resulting eddy viscosity. So we

set Λ = H3(L), where H3(L) is the Sobolev space endowed with the inner product

〈p1, p2〉H3(L),

=
〈
p1, p2

〉
L2(L)

+ l21

〈dp1

ds
,
p2

ds

〉
L2(L)

+ l42

〈d2p1

ds2
,
p2

ds2

〉
L2(L)

+ l63

〈d3p1

ds3
,
p2

ds3

〉
L2(L)

,

=

ˆ b

s=a

[
p1 p2 + l21

dp1

ds

dp2

ds
+ l42

d2p1

ds2

d2p2

ds2
+ l63

d3p1

ds3

d3p2

ds3

]
ds,

where p1, p2 ∈ H3(L), l1, l2, l3 ∈ R are the length scale parameters for each of the

respective inner products that increase the regularity. As long as the length scale

parameters

0 < l1, l2, l3 <∞,

we have equivalent inner products (in the sense of norm equivalence). That is,

invoking the Riesz representation theorem we obtain for the directional derivative

J ′(ν; ν ′) = 〈∇L2

ν J , ν ′〉L2(L),

= 〈∇H3

ν J , ν ′〉H3(L),

=
〈
∇H3

ν J , ν ′
〉
L2(L)

+ l21

〈d(∇H3

ν J )

ds
,
dν ′

ds

〉
L2(L)

+ l42

〈d2(∇H3

ν J )

ds2
,
d2ν ′

ds2

〉
L2(L)

+ l63

〈d3(∇H3

ν J )

ds3
,
d3ν ′

ds3

〉
L2(L)

, (2.39)
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Just as before, we wish to isolate the perturbation term which we shall do by using

integration by parts. Before we begin computing the inner products in (2.39), we

must assume boundary conditions for the Sobolev gradient ∇H3

ν J

d(2i+1) (∇H3

ν J )

ds(2i+1)

∣∣∣
s=a

=
d(i) (∇H3

ν J )

ds(i)

∣∣∣
s=b

= 0, i = 0, . . . , 2. (2.40)

Since we are looking at the set of functions ∇H3

ν J that must satisfy the boundary

conditions (2.40), we must also consider the set of functions ν ′ which inherit these

constraints. Now, let us observe the first term in (2.39)

〈
∇H3

ν J , ν ′
〉
L2(L)

=

ˆ b

s=a

∇H3

ν J ν ′ ds. (2.41)

This term is already in the appropriate form, so we do not need to perform integration

by parts. Now we consider the second term in (2.39)

〈d(∇H3

ν J )

ds
,
dν ′

ds

〉
L2(L)

=

ˆ b

s=a

d(∇H3

ν J )

ds

dν ′

ds
ds.

Performing integration by parts, and using the boundary condition in (2.40)

〈d(∇H3

ν J )

ds
,
dν ′

ds

〉
L2(L)

=

ˆ b

s=a

d(∇H3

ν J )

ds

dν ′

ds
ds,

=
[d(∇H3

ν J )

ds
ν ′
]∣∣∣b
s=a
−
ˆ b

s=a

d2(∇H3

ν J )

ds2
ν ′ ds,

= −
ˆ b

s=a

d2(∇H3

ν J )

ds2
ν ′ ds. (2.42)

Similarly, we use integration by parts and the boundary conditions in (2.40) to
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transform the third term in (2.39)

〈d2(∇H3

ν J )

ds2
,
d2ν ′

ds2

〉
L2(L)

=

ˆ b

s=a

d2(∇H3

ν J )

ds2

d2ν ′

ds2
ds,

=
[d2(∇H3

ν J )

ds2

dν ′

ds

]∣∣∣b
s=a
−
ˆ b

s=a

d3(∇H3

ν J )

ds3

dν ′

ds
ds,

= −
[d3(∇H3

ν J )

ds3
ν ′
]∣∣∣b
s=a

+

ˆ b

s=a

d4(∇H3

ν J )

ds4
ν ′ ds,

=

ˆ b

s=a

d4(∇H3

ν J )

ds4
ν ′ ds. (2.43)

Lastly, we perform integration by parts on the fourth term in (2.39) and use the

boundary conditions in (2.40)

〈d3(∇H3

ν J )

ds3
,
d3ν ′

ds3

〉
L2(L)

=

ˆ b

s=a

d3(∇H3

ν J )

ds3

d3ν ′

ds3
ds,

=
[d3(∇H3

ν J )

ds3

d2ν ′

ds2

]∣∣∣b
s=a
−
ˆ b

s=a

d4(∇H3

ν J )

ds4

d2ν ′

ds2
ds,

= −
[d4(∇H3

ν J )

ds4

dν ′

ds

]∣∣∣b
s=a

+

ˆ b

s=a

d5(∇H3

ν J )

ds5

dν ′

ds
ds,

=
[d5(∇H3

ν J )

ds5
ν ′
]∣∣∣b
s=a
−
ˆ b

s=a

d6(∇H3

ν J )

ds6
ν ′ ds,

= −
ˆ b

s=a

d6(∇H3

ν J )

ds6
ν ′ ds. (2.44)

When performing integration by parts, the only terms that remain are the integrals

over the space domain, and all boundary terms are zero due to the (judiciously

chosen) boundary conditions in (2.40). Now plugging the expressions found in (2.41),
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(2.42), (2.43), and (2.44) into (2.39), we obtain

〈∇L2

ν J , ν ′〉L2(L) = 〈∇H3

ν J , ν ′〉H3(L),

=
〈
∇H3

ν J , ν ′
〉
L2(L)

+ l21

〈d(∇H3

ν J )

ds
,
dν ′

ds

〉
L2(L)

+ l42

〈d2(∇H3

ν J )

ds2
,
d2ν ′

ds2

〉
L2(L)

+ l63

〈d3(∇H3

ν J )

ds3
,
d3ν ′

ds3

〉
L2(L)

,

=

ˆ b

s=a

[
∇H3

ν J − l21 ·
d2(∇H3

ν J )

ds2
+ l42 ·

d4(∇H3

ν J )

ds4
− l63 ·

d6(∇H3

ν J )

ds6

]
ν ′ ds. (2.45)

Since this integral relation must hold for every arbitrary ν ′, then determining the

Sobolev gradient reduces down to solving the inhomogeneous elliptic boundary value

problem

∇L2

ν J (s) = ∇H3

ν J (s)− l21
d2(∇H3

ν J (s))

ds2
+ l42

d4(∇H3

ν J (s))

ds4
− l63

d6(∇H3

ν J (s))

ds6
,

(2.46a)

d(2i+1) (∇H3

ν J (s))

ds(2i+1)

∣∣∣
s=a

=
d(i) (∇H3

ν J (s))

ds(i)

∣∣∣
s=b

= 0, i = 0, . . . , 2. (2.46b)

It should be noted that other boundary condition choices in (2.46b) can be made

to determine the Sobolev gradients, but the present boundary values were found to

best suit the current investigation. The left boundary condition allows the values of

ν
((

∂ũ
∂x

)2)
at s = a to change, otherwise this would fix the assumption ν

((
∂ũ
∂x

)2)
= 0

at s = 0 (from the Smagorinsky ansatz). Where-as, the right boundary condition

fixes the values at s = b. Since I ⊂ L, we have b > I for all identifiability intervals.
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So, the value of ν
((

∂ũ
∂x

)2)
at s = b will not be required when solving the LES system,

hence we can fix the value at s = b. These boundary conditions are a design choice,

and will inherently effect the general characteristics of the eddy viscosity near the

endpoints s = a and s = b.

By adjusting the length scale parameters l1, l2, l3, we effectively control the smooth-

ness of the Sobolev gradient ∇H3

ν J (s), and the smoothness of the optimal eddy

viscosity. We can consider the differential equation (2.46) in Fourier space, to obtain

∇L2

ν J = ∇H3

ν J − l21
d2(∇H3

ν J )

ds2
+ l42

d4(∇H3

ν J )

ds4
− l63

d6(∇H3

ν J )

ds6
,

∇L2

ν J =

(
I − l21

d2

ds2
+ l42

d4

ds4
− l63

d6

ds6

)
∇H3

ν J ,

∇̂L2

ν J =

(
1 + l21 k

2 + l42 k
4 + l63 k

6

)
∇̂H3

ν J ,

∇̂H3

ν J =
1

1 + l21 k
2 + l42 k

4 + l63 k
6︸ ︷︷ ︸

L(k)

∇̂L2

ν J . (2.47)

We can see that as the length scale parameters l1, l2, l3, increase, the function L(k)

acts as a more aggressive “low-pass” filter applied to the L2 gradient. The higher

indexed length scale parameters have a higher influence on the filtering process due

to the high powers on the wavenumbers. These parameters shall act as “knobs” we

can adjust in order to obtain a sufficiently smooth eddy viscosity. We also note if

the length scale parameters are all set equal to zero, we simply obtain the original

L2 gradient.
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Chapter 3

Problem Set-up

In our current investigation, there are several factors that can intrinsically change

the behaviour of the given flow and the properties of the optimization procedure. In

this chapter, we discuss the physical parameters to be used for solving our DNS and

LES solutions. The observation operators are also introduced, which allows us to

minimize the cost functional in the physical space.

3.1 Physical Parameters

In order to determine an optimal eddy viscosity, we must select physical parameters

that could intrinsically change the evolution of the solutions to the governing system.

One way that we can control the behaviour of the Kuramoto-Sivashinsky equations

is by choosing particular values of the dissipation and energy production terms, ν1

and ν2 respectively, first introduced in (1.6). If we consider the linear terms of (1.6),
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and take the Fourier transform with respect to x, we obtain

∂u(t, x)

∂t
+ ν1

∂4u(t, x)

∂x4
+ ν2

∂2u(t, x)

∂x2
= 0,

∂û(t, k)

∂t
+ ν1 k

4 û(t, k)− ν2 k
2 û(t, k) = 0,

∂û(t, k)

∂t
= k2

[
ν2 − ν1 k

2
]︸ ︷︷ ︸

F (k)

û(t, k). (3.1)

Considering the RHS of (3.1) as a general function of coefficients F (k), dependent on

wavenumber k, we can determine the maximum/ peak wavenumber of the system.

Taking the derivative of F (k) with respect to k, and setting it equal to 0

0 =
dF

dk
,

0 = 2k
[
ν2 − ν1 k

2
]

+ k2 [−2ν1 k] ,

0 = ν2 − 2ν1 k
2,

|k| =
√

ν2

2ν1

. (3.2)

From (3.2), we can see that F (k) peaks at a wavenumber determined by ν1 and

ν2. This wavenumber corresponds to the number of crests we should (on average)

observe in the solution. For our numerical results we set ν1 = 1 and ν2 = 100, so

using (3.2) we expect

|k| =
√

100

2
,

≈ 7,

37



M.Sc. Thesis – Pritpal Matharu McMaster University – Mathematics and Statistics

crests to be present in the solutions. Since the solution spectrum peaks around this

wavenumber, we choose a Fourier filter cutoff kmax in (2.2) larger than this value to

ensure that majority of the energy is captured in the spectrum when performing the

LES. So for the numerical results provided, we set the maximum resolved wavenum-

ber kmax = 16.

The number of observation points, N in (2.12), shall be chosen to be less than the

number of resolved Fourier modes in the LES. Thus, we set N = 8 as the number of

observation points. To obtain an appropriate initial condition w0(x) for the system,

we begin with a simple initial condition of − sin(x). We use this sine function as an

initial condition in (1.6), and solve the DNS system for an extended period of time

such that this particular initial condition is “forgotten” and the turbulent dynamics

of the system are present in the solution. We then take this final turbulent solu-

tion as the initial condition w(0, x) = w0(x) which we shall use in computations of

the DNS and LES. It shall also be noted that choosing the initial condition in this

manner ensures that we obtain solutions with a “full” spectrum. Using this as our

initial condition at t = 0, we choose a terminal time value T = 3 × 10−3. This is

long enough to include a few characteristic “events” in the system evolution, however

without a closure term the solutions will not completely diverge from the DNS or

become unbounded.

For (2.14), we must use an appropriate Smagorinsky-type initial guess for the eddy

viscosity ν0. For this, we shall use

ν0

((∂ũ
∂x

)2)
= (Cs kmax)

2

(√(∂ũ
∂x

)2
)
, (3.3)
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where Cs is the Smagorinsky coefficient.

3.2 Observation Operator

For this current investigation, we shall choose to minimize the cost functional defined

in the physical space at some (equispaced) points, {xi}N=8
i=1 . Thus the operators

Hi, i = 1, . . . , N acting on the function g will be expressed in terms of integration

against a Dirac Delta function δ, such that

Hig =

ˆ 2π

0

δ(xi − x) g(x) dx, i = 1, . . . , N. (3.4)

We must also determine the corresponding adjoint of the operators, H∗i , i = 1, . . . , N ,

which is required to obtain the form given in (2.19). Since

Hi : L2(Ω) −→ R, i = 1, . . . , N, (3.5)

we shall consider the following

g1 ∈ R, g2 ∈ L2(Ω),

Hi : L2(Ω) −→ R, i = 1, . . . , N,

Hig2 =

ˆ 2π

0

δ(xi − x) g2(x) dx, i = 1, . . . , N.
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Now solving the adjoint operator H∗i

〈g1, Hig2〉R = g1

ˆ 2π

0

δ(xi − x) g2(x) dx,

=

ˆ 2π

0

[δ(xi − x) g1] g2(x) dx,

= 〈H∗i g1, g2〉L2(Ω), i = 1, . . . , N.

We note that the operators Hi, i = 1, . . . , N are not self-adjoint (Hi 6= H∗i ), but we

obtain an alternate mapping for H∗i , i = 1, . . . , N

H∗i : R −→ L2(Ω), i = 1, . . . , N,

H∗i = δ(xi − x), i = 1, . . . , N.
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Chapter 4

Numerical Approach

The purpose of this chapter is to describe the numerical approach used for solving

our optimization problem. The numerical techniques for solving the PDEs and nu-

merically dealing with the state dependent eddy viscosity is discussed. The gradient

descent approach used in this problem is also introduced, and sequence of steps for

constructing the optimal eddy viscosity is outlined.

4.1 Discretization

Now that we have formulated the optimization problem in the continuous setting, we

shall discretize the problem numerically to approximate the optimal eddy viscosity.

For this problem, we are dealing with PDEs, which naturally must be discretized over

the spatial and temporal domain. Since the control variable, ν
((

∂ũ
∂x

)2)
, is dependent

on the state (flow) variable, we must also consider a domain over this state dependent

domain. That means we must create numerical grids for: x ∈ (0, 2π), t ∈ [0, T ],
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and
(
∂ũ
∂x

)2 ∈ L. For all calculations, we attempt to use spectrally accurate numerical

methods to maintain optimal accuracy of solutions, while still being computationally

efficient. The domain Ω will be discretized using Nx equispaced grid points, such

that the step-size in space shall be denoted as ∆x. Similarly, we denote ∆t as the

step-size in time. Chebyshev points are used to discretize the state space, which

will allow us to utilize several spectrally accurate methods. As described in [26], the

Chebyshev points are

γn = cos
(nπ
Ns

)
, for n = 0, . . . , Ns,

where Ns is the number of points used to discretize the state domain. We notice

that γn ∈ [−1, 1], so we must rescale the state domain. Noting the width of the state

domain

W =
b− a

2
,

and the midpoint of the domain

M =
a+ b

2
,

we can easily shift and rescale the Chebyshev points to our state domain

sn =
1

2
[a+ b+ (b− a) γn],

= M +W γn.
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We can also compute the corresponding rescaling for differentiation/ integration in

the state space

dsn = W dγn,

dγn =
1

W
dsn.

When computing derivatives in state space, dν

d
((

∂ũ
∂x

)2) (such as in (2.21) or in (2.38)),

we can use Chebyshev differentiation as described in [26], and rescale appropriately

for our domain. Similarly, when required to integrate in the state space (such as

in Section 5.3) we use the Clenshaw-Curtis quadrature also described in [26], and

appropriately scale the integration weighting. Both methods described ensure we

have spectral accuracy, to minimize errors in the state domain. It should also be

noted, that when performing integration in the periodic spatial domain, we use the

trapezoidal numerical integration, which on the periodic domain is equivalent to the

Gauss quadrature.

To solve the stiff partial differential equations given in (1.6), (2.8), and (2.21) we uti-

lize the exponential time-differencing fourth-order Runge-Kutta method (ETDRK4)

introduced in [6] but we shall use the modified version from [14]. With this method,

we obtain spectral accuracy in the spatial domain and fourth order accuracy in the

temporal domain, O(∆t4). It should be noted that the system of equations given in

(1.6) and (2.8) are initial-value problems, so we integrate forwards in time. Where as,

the adjoint system given in (2.21) is a terminal-value problem, so we must integrate

backwards in time. This can be easily modified to be an initial-value problem, such
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that we can use the ETDRK4 method, via the simple substitution

ṫ = T − t.

Then, computationally we solve the following adjoint system forwards in time

∂ũ∗

∂t
+ ν1

∂4ũ∗

∂x4
+ ν2

[∂2ũ∗

∂x2
− ũ∂ũ

∗

∂x

]
+

∂

∂x

[
2

dν

d
((

∂ũ
∂x

)2) ∂ũ∂x ∂3ũ

∂x3

∂ũ∗

∂x

]
+

∂3

∂x3

[
ν
∂ũ∗

∂x

]
=

N∑
i=1

H∗i [Hiũ−mi],

∂(i)ũ∗

∂x(i)
(t, 0) =

∂(i)ũ∗

∂x(i)
(t, 2π), i = 0, . . . , 3,

ũ∗(0, x) = 0.

When solving the fully resolved (DNS) system in (1.6), we use standard dealiasing

and the Orszag Two-Thirds Rule [1], to obtain alias-free results for the DNS. For the

filtered systems, LES and adjoint system in (2.8) and (2.21) respectively, we are not

required to dealias given that the aggressive filtering operation has an effect equiv-

alent to dealiasing. In addition, we shall note that the standard 2/3 rule would not

appropriately dealias these equations. This is due to the product of more than two

terms appearing in the equations, as well as the 2/3 rule holds for only polynomial

terms and the form of the eddy viscosity is unknown [1].

In solving the partial differential equations there is a dependence on the eddy vis-

cosity and its derivative, which are defined in the state space. Since we are solving

these equations in the x domain, we require a way to define the eddy viscosity and
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its derivative in terms of the x domain. To do this, we use barycentric interpola-

tion on Chebyshev points [27]. This method ensures that our eddy viscosity and its

derivatives remain sufficiently smooth, while maintaining accuracy. This form of the

barycentric interpolation also ensures that the interpolation remains stable and is

computationally efficient for the given domains.

To obtain a spectrally accurate solution for the Sobolev gradient, we use the Chebfun

package [10] to solve the ordinary differential equation given in (2.46). The Chebfun

package (with the use of ultraspherical polynomials) allows us to solve this high-order

boundary-value problem, in a computationally efficient manner without having to ad-

just for ill-conditioned matrices. Since all methods are implemented using spectrally

accurate approaches, except for time-stepping, we expect time-stepping (O(∆t4)) to

be the dominating error term in computations for solving the differential equations

and determining the gradient.

4.2 Gradient Descent

Once we have computed the appropriate Sobolev gradient, we must iteratively com-

pute the optimal eddy viscosity, via (2.14). Rather than naively using the basic form

of the steepest descent method, we further improve the approach by using a conjugate

gradient method. In particular, we use the Polak-Ribiere formula [19] to construct a

favourable descent direction. This method constructs a conjugate descent direction

that uses information from the previous descent direction in order to optimize next
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direction taken. The Polak-Ribiere method uses a factor to determine the magnitude

that the previous gradient effects the current gradient, computed using the formula

γPR =

〈
(gn+1 − gn) , gn+1

〉
Λ(L)〈

gn, gn
〉

Λ(L)

, (4.1)

where

gn+1 = −∇νJ (ν(n+1)).

The conjugate direction is then determined by

∇νJ (ν(n+1)) = gn+1 + γPR gn. (4.2)

It shall be noted that when we compute the conjugate gradient for the nth itera-

tion, this replaces the previously computed value. When choosing to compute the

conjugate gradient, this can be determined with respect the L2 gradient or the H3

gradient. In this investigation, we choose to determine the Sobolev gradient, then

construct the conjugate gradient using ∇H3

ν J . Initially, γPR = 0 and after fPR it-

erations the value of γPR is reset to 0. This resets the conjugate gradient method,

which has been found to ensure the method does not “run out of steam” [19].

We also need to determine the optimal step length τ (n), in (2.14), to ensure we do

not take too small or large of a step when applying the gradient. We solve this by
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determining at each iteration

τ (n) = arg max
τ>0

{J (τ) = J (ν(n) − τ ∇νJ (ν(n)))}. (4.3)

To perform this, we use a bracketing routine along with Brent’s method [19], in a

nonlinear minimization function. This method does not require derivatives, so it de-

termines the optimal step length in a computationally efficient manner. So, we use

the sequence of steps outlined in Algorithm 1 to obtain the optimal eddy viscosity.

Algorithm 1 Algorithm for constructing optimal eddy viscosity ν̌
• set n = 0

• set ν0 as a Smagorinsky type initial guess

repeat

• set n = n+ 1

• solve the direct LES problem in (2.8)

• solve the adjoint problem in (2.21)

• determine the cost functional gradient ∇L2

ν J (ν(n)) given by (2.38)

• determine the Sobolev gradient ∇H3

ν J (ν(n)) given by (2.38)

• determine the conjugate gradient, using the Polak-Ribiere method given in

(4.1) and (4.2)

• determine the optimal step length τ (n) in (2.14), by solving (4.3) via Brent’s

line minimization method

• update the eddy viscosity ν(n), using the gradient descent algorithm (2.14)

until condition termination criterion for optimal ν(n) is satisfied
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The algorithm terminates once the cost functional gradient can no longer be reduced,

which computationally we implement by imposing the condition on the relative dif-

ference of the cost functional values per iteration

|J (ν(n+1))− J (ν(n))|
J (ν(n))

< εtol, (4.4)

where εtol is tolerance criterion.
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Chapter 5

Results

This chapter highlights the key numerical results, obtained from this investigation.

We state the diagnostic quantities used to determine the performance of multiple

numerical solutions. A fundamental test for validating the gradient used to determine

the optimal eddy viscosity is studied, to ensure calculations were performed correctly.

The numerical results are shown, and key cases for particular values of the Sobolev

parameters are investigated.

5.1 Numerical Parameters

Solving this highly sensitive optimization problem, several numerical parameters

were tested to ensure numerical methods were stable and converged to appropriate

solutions. To solve the required PDEs, Nx = 1024 = 210 points were used to discretize

the spatial domain, giving a step-size of ∆x ≈ 6.1359 × 10−3. We use a temporal

step size of ∆t = 3.0 × 10−6, which ensures that accurate solutions to the PDEs
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are obtained. To encompass the entire range of the state variable, numerically we

set L := [a = 0, b = 4002]. The interval L was discretized using Ns = 4096 = 212

Chebyshev points, and the eddy viscosity was discretized on the fixed interval L

using these points. For the initial guess of the eddy viscosity, we set the Smagorinsky

coefficient equal to Cs = 0.002. The resetting frequency for the conjugate gradient

method used was fPR = 10, and we set the termination tolerance εtol = 10−7.

5.2 Diagnostic Quantities

In order to assess how well the optimal eddy viscosity performs and how close the

predictions of our LES models are to the DNS solutions, in this section we introduce

several diagnostic quantities. The first quantity we shall use is

E1(t) =
1

||w(t)||L2(0,2π)||ũ(t)||L2(0,2π)

ˆ 2π

0

w(t, x) ũ(t, x) dx. (5.1)

This diagnostic quantity could be considered as the cosine of the “angle” between

the DNS and LES solutions, computed at each point in time. The second diagnostic

quantity we shall consider is the L2 difference between the DNS and LES solutions,

normalized by the “exact” solution (DNS), which is given as

E2(t) =
1

||w(t)||2L2(0,2π)

ˆ 2π

0

(w(t, x)− ũ(t, x))2 dx. (5.2)

We shall also introduce 3 different diagnostic quantities, pertaining particularly to

the energy in the system. We shall consider the kinetic energy, normalized by the
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kinetic energy of the DNS

K(t) =
||ũ(t)||2L2(0,2π)

||w(t)||2L2(0,2π)

,

=
1

||w(t)||2L2(0,2π)

ˆ 2π

0

ũ(t, x)2 dx. (5.3)

The normalized enstrophy (H1 seminorm), shall also be observed

E3(t) =
|ũ(t)|2H1(0,2π)

|w(t)|2H1(0,2π)

,

=
1

|w(t)|2H1(0,2π)

ˆ 2π

0

(
∂ũ(t, x)

∂x

)2

dx, (5.4)

where | · |2Hp denotes the seminorm

|v|2Hp(Π) = ||∇pv||2L2(Π) =

ˆ
Π

(
∂pv

∂xp

)2

dx.

The third energy diagnostic quantity we consider is the normalized H2 seminorm

E4(t) =
|ũ(t)|2H2(0,2π)

|w(t)|2H2(0,2π)

,

=
1

|w(t)|2H2(0,2π)

ˆ 2π

0

(
∂2ũ(t, x)

∂x2

)2

dx. (5.5)

We shall now note the relationship between rate of change of the kinetic energy

with the H1 and H2 seminorms. To do this, we consider the Kuramoto-Sivashinsky
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equation

∂u

∂t
+ ν1

∂4u

∂x4
+ ν2

[
∂2u

∂x2
+ u

∂u

∂x

]
= 0,

∂u

∂t
= −ν1

∂4u

∂x4
− ν2

[
∂2u

∂x2
+ u

∂u

∂x

]
. (5.6)

Now we integrate (5.6) against u over space

ˆ 2π

0

u
∂u

∂t
dx =

ˆ 2π

0

−u
[
ν1
∂4u

∂x4
+ ν2

[
∂2u

∂x2
+ u

∂u

∂x

]]
dx,

d

dt

ˆ 2π

0

1

2
u2 dx = −ν1

ˆ 2π

0

u
∂4u

∂x4
dx− ν2

ˆ 2π

0

u
∂2u

∂x2
dx− ν2

ˆ 2π

0

u2 ∂u

∂x
dx. (5.7)

The LHS of (5.7) is simply the time derivative of the kinetic energy. Now we shall

perform integration by parts on the third term on the RHS of (5.7), to show the

nonlinear term does not contribute energy to the system

ˆ 2π

0

u2 ∂u

∂x
dx =

ˆ 2π

0

u2 ∂u

∂x
dx,

=
[
u3
] ∣∣∣2π
x=0
− 2

ˆ 2π

0

u2 ∂u

∂x
dx. (5.8)
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Due to the periodic boundary conditions, the first term in (5.8) is equal to zero.

Thus, we have

ˆ 2π

0

u2 ∂u

∂x
dx = −2

ˆ 2π

0

u2 ∂u

∂x
dx,

3

ˆ 2π

0

u2 ∂u

∂x
dx = 0,

ˆ 2π

0

u2 ∂u

∂x
dx = 0. (5.9)

Therefore, we can see from (5.9) that the nonlinear term is equal to zero, and does

not contribute energy into the system. So, we perform integration parts on the

remaining (linear) terms on the RHS of (5.7)

dKkin(t)

dt
= −ν1

ˆ 2π

0

u
∂4u

∂x4
dx− ν2

ˆ 2π

0

u
∂2u

∂x2
dx,

dKkin(t)

dt
= −ν1

ˆ 2π

0

(
∂2u

∂x2

)2

dx+ ν2

ˆ 2π

0

(
∂u

∂x

)2

dx,

dKkin(t)

dt
= ν2 |u(t)|2H1(0,2π) − ν1 |u(t)|2H2(0,2π). (5.10)

From (5.10), we can see that the rate of change with respect to time of the kinetic

energy consists of simply the H1 seminorm minus the H2 seminorm, scaled by ν2 and

ν1 respectively. The final diagnostic quantity we shall consider is the error history

at the observation points

{xi}N=8
i=1 =

{
(i− 1)

π

4

}8

i=1
. (5.11)
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We use the following normalization factor for the observation error history

F =
1

2πT

ˆ T

0

ˆ 2π

0

w(t, x)2 dx dt, (5.12)

to give a reference magnitude of the “true” solution. So, we shall consider the

difference between the LES and DNS at each individual observation point

Exi(t) =
1

F
(w(t, xi)− ũ(t, xi))

2 , i = 1, . . . , N. (5.13)

5.3 Validation of Gradient Evaluation

Due to the mathematical and computational complexity of determining the key ele-

ment of the gradient descent algorithm in (2.14), cost functional gradient ∇νJ (ν),

we shall now introduce a validation method to ensure this gradient will be computed

correctly. Denoted the κ-test, this is a diagnostic test to verify that the gradient of

the cost functional is computed correctly. This consists of comparing the directional

derivative in (2.17) using two forms, one being the Gâteaux derivative approximated

using the finite-difference and the other is the expression for J ′ given in terms of

the Riesz representation formula and the adjoint-based gradient, given in (2.17). We

take the quotient of these these two quantities to obtain the κ-test

κ(ε) =
ε−1[J (ν + εν ′)− J (ν)]

〈∇νJ , ν ′〉Λ(L)

, (5.14)
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where ε is the magnitude of the perturbation in the direction of ν ′, for discretizing

the finite difference formulation of the directional derivative. Since these expressions

should be equivalent, we expect the values of κ(ε) to be close to unity, which confirms

that the gradient has been computed correctly. However, we should note for large

values of ε we expect a poor finite difference approximation. In addition, for small

values of ε numerical round-off will become of concern causing cancellation errors.

Thus, we expect the value of κ to be close to unity for an intermediate range of ε

values. We also note that the denominator in (5.14) can be evaluated using differ-

ent Hilbert spaces Λ, hence, we shall only verify the L2 gradient since the Sobolev

gradient ∇H3

ν J is a smoother version of ∇L2

ν J , so we should put more emphasis on

validating the L2 gradient. Therefore, computationally we shall verify our gradient

by checking

κ(ε) =
ε−1[J (ν + εν ′)− J (ν)]´ b
s=a
∇L2

ν J (s) ν ′(s) ds
≈ 1. (5.15)

Since this directional derivative is defined for arbitrary perturbations and should

hold for any function in that space, we expect the expression in (5.15) to hold for

any ν ′(s). Thus, it is also important to perform this test using multiple test functions

ν ′
((

∂ũ
∂x

)2)
.
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For mathematical and computational purposes, we shall test two random perturba-

tions

ν ′1(s) = 10−2
(

4 cos
( s

350000

))2

, (5.16)

ν ′2(s) = 2−
(

exp
( s

750000

))2

. (5.17)

We perform the κ-test for these test functions, with a range of ε ∈ [10−15, 10−1]. The

results in Figure 5.1 show the values of κ(ε) and in Figure 5.2 we observe how close to

unity the values of the κ-test are. As expected, for intermediate values of ε the value

of κ(ε) is very close to unity. Also as anticipated, we notice for very small values and

large values of ε, κ(ε) deviates away from unity, which is due to numerical round-off

errors and a poor finite difference approximation respectively. We shall also note in

Figure 5.2, as numerical parameters are refined the values κ(ε) tends closer to unity,

which is the expected trend.
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Figure 5.1: The values of κ(ε) given in (5.15), for the perturbations (5.16) (blue,
circles) and (5.17) (red, triangles), using two numerical time step values: ∆t =
3× 10−6 (empty symbol) and ∆t = 1× 10−6 (filled symbol).
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Figure 5.2: The quantity log10 |1− κ(ε)|, for the perturbations (5.16) (blue, circles)
and (5.17) (red, triangles), using two numerical time step values: ∆t = 3 × 10−6

(empty symbol) and ∆t = 1× 10−6 (filled symbol).
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5.4 Computational Results

We begin with a few plots to help understand the dynamics of the given flow. In

Figure 5.4, we provide a plot of the spectrum of the initial condition w0(x) used for

these computations. In Figures 5.5, 5.6, and 5.7, we provide space-time contour plots

of the DNS, LES with no closure term, and LES with the closure given in terms initial

guess ν0, to see the intrinsic behaviour of each of the flows. In Figure 5.5, we can see

the interesting characteristic “events” as the merging and separation of the peaks of

the solution. Figures 5.4 and 5.5 also indicate the maximum resolved wavenumber

kmax = 16, representing the filter in Fourier and physical space respectively.

Solving the minimization problem (2.13) to determine the optimal eddy viscosity

ν̌, we use the Sobolev length-scale parameters l1, l2, l3 to ensure the eddy viscosity

is sufficiently smooth as well as to optimize the convergence to ν̌ in (2.14). For

simplicity, we set l1 = 0 and adjust the values of l2 and l3. In Figure 5.3, we show a

schematic of the function L(k) given in (2.47). We can see how the “low-pass” filter

acts as a function of the Sobolev length-scale parameters, and how we can make this

more aggressive by increasing the Sobolev length scale parameter to act upon lower

wavenumbers. Due to the steep slope the filter has for l2 and l3, these dominate the

filtering process and this is why we can simply set l1 = 0. In Figure 5.8, we show the

value of the cost functional for various Sobolev parameters and in Figure 5.9 show

the corresponding optimal eddy viscosity compared to the initial guess given in (3.3).

The value of the cost functional (2.12) for the initial guess was J (ν0) = 1.4823. In

Table 5.1, we have provided multiple cases with corresponding Sobolev parameters

and cost functional value at the optimal eddy viscosity ν̌. Several combinations of
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0

1

Figure 5.3: Schematic of the function L(k) given in (2.47), in log-based coordinates
for l2 > l3. Noted are 1

l2
and 1

l3
, with the slope the of the resulting filter being ≈ −4

and ≈ −6, respectively.

Sobolev parameters were tested, and the cases shown in Table 5.1 were found to best

minimize the cost functional in the optimization procedure.

Choosing the two best representative cases, we wish to apply our diagnostic tools in

order to measure how well the corresponding optimal closures perform within and

beyond the optimization window T . So, we test the optimal eddy viscosities for a time

interval up to t = 2T and compare the result of four cases: DNS, LES with no closure,

LES with the closure given in terms initial guess ν0, and the LES with the optimal

eddy viscosity ν̌. We use the LES with no closure comparison, as a way of observing

how the system behaves solely based on the large-scale structures. Observing this

solution also serves as a verification that we have chosen an aggressive enough filter

such that the solution diverges from the DNS. Observing the solution of the LES
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with the closure given in terms initial guess ν0 will act as a reference solution for the

standard Smagorinsky model, which we expect the optimal eddy viscosity solution

to improve upon. First, we shall consider the optimal eddy viscosity ν̌ obtained from

Case C given in Table 5.1. We choose to observe Case C, because it reduces the cost

functional by a factor of ≈ 4.4 while producing a very smooth eddy viscosity (as

shown below). We show: a space-time contour plot in Figure 5.10(a), first diagnostic

quantity E1(t) from (5.1) in Figure 5.11(a), second diagnostic quantity E2(t) from

(5.2) in Figure 5.12(a), normalized kinetic energy K(t) from (5.3) in Figure 5.13(a),

normalized enstrophy E3(t) from (5.4) in Figure 5.14(a), normalized H2 seminorm

E4(t) from (5.5) in Figure 5.15(a), and the observation point error normalized Exi(t)

from (5.13) in Figure 5.16. We also compare the solutions in physical space in

Figure 5.18.

The optimal eddy viscosity obtained from Case D given in Table 5.1 obtains the

smallest value of J , and so we use it as the second representative case to apply

our diagnostic tools. We show: a space-time contour plot in Figure 5.10(b), first

diagnostic quantity E1(t) from (5.1) in Figure 5.11(b), second diagnostic quantity

Case l1 l2 l3 J (ν̌) Notes

A 0 106 106 0.4313

B 0 101 105 0.4313

C 0 104 103 0.3347 smooth dependence of ν̌ on
(
∂ũ
∂x

)2

D 0 103 101 0.1806 rough dependence of ν̌ on
(
∂ũ
∂x

)2

Table 5.1: A summary of the optimal eddy viscosities, for different Sobolev param-
eters l1, l2, l3. The corresponding value of the cost functional is provided.
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E2(t) from (5.2) in Figure 5.12(b), normalized kinetic energy K(t) from (5.3) in

Figure 5.13(b), normalized enstrophy E3(t) from (5.4) in Figure 5.14(b), normalized

H2 seminorm E4(t) from (5.5) in Figure 5.15(b), and the observation point error

normalized Exi(t) from (5.13) in Figure 5.17. We also compare the solutions in

physical space in Figure 5.19.
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Figure 5.4: The spectrum in Fourier space of the initial condition w0(x), with the
vertical line (green, dashed) indicating the maximum resolved wavenumber kmax.

Figure 5.5: A space-time contour plot of the DNS solution, solved up to t = 2T .
The horizontal lines (green, dashed) indicate the length scale corresponding to the
maximum resolved wavenumber kmax = 16.
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Figure 5.6: A space-time contour plot of the LES with no closure term solution,
solved up to t = 2T .

Figure 5.7: A space-time contour plot of the LES with the closure given in terms
initial guess ν0 solution, solved up to t = 2T .
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Figure 5.8: The decrease of the cost functional J (ν(n)), given in (2.12), as function
of iteration n for Sobolev parameters given in Table 5.1: Case A (blue, dots), Case
B (red, circles), Case C (yellow, dash-dot), and Case D (purple, dashed).
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Figure 5.9: The optimal eddy viscosity ν̌ for Sobolev parameters given in Table 5.1:
Case A (blue, dots), Case B (red, circles), Case C (yellow, dash-dot), and Case D
(purple, dashed). The optimal eddy viscosity is compared to the initial guess given
in (3.3) (black, solid line).
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(a)

(b)

Figure 5.10: Space-time contour plots for LES with optimal eddy viscosity ν̌ from:
(a) Case C in Table 5.1, and (b) Case D in Table 5.1, solved up to t = 2T .
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Figure 5.11: The first diagnostic quantity E1(t) given in (5.1), for the optimal eddy
viscosity ν̌ from: (a) Case C in Table 5.1, and (b) Case D in Table 5.1. Shown is
when ũ(t, x) is set as: DNS (black, solid line), LES with no closure term (blue, dots),
LES with the closure given in terms initial guess ν0 (red, dash-dot), and the LES
with the optimal eddy viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is
optimized for t = [0, T ] (bold lines), and here we show for up to t = 2T (outside of
the “training” interval are the thin plots).
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Figure 5.12: The second diagnostic quantity E2(t) given in (5.2), for the optimal
eddy viscosity ν̌ from: (a) Case C in Table 5.1, and (b) Case D in Table 5.1. Shown
is when ũ(t, x) is set as: DNS (black, solid line), LES with no closure term (blue,
dots), LES with the closure given in terms initial guess ν0 (red, dash-dot), and the
LES with the optimal eddy viscosity ν̌ (yellow, dashed). The optimal eddy viscosity
is optimized for t = [0, T ] (bold lines), and here we show for up to t = 2T (outside
of the “training” interval are the thin plots).
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Figure 5.13: The normalized kinetic energy K(t) given in (5.3), for the optimal eddy
viscosity ν̌ from: (a) Case C in Table 5.1, and (b) Case D in Table 5.1. Shown is
when ũ(t, x) is set as: DNS (black, solid line), LES with no closure term (blue, dots),
LES with the closure given in terms initial guess ν0 (red, dash-dot), and the LES
with the optimal eddy viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is
optimized for t = [0, T ] (bold lines), and here we show for up to t = 2T (outside of
the “training” interval are the thin plots).
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Figure 5.14: The normalized enstrophy E3(t) given in (5.4), for the optimal eddy
viscosity ν̌ from: (a) Case C in Table 5.1, and (b) Case D in Table 5.1. Shown is
when ũ(t, x) is set as: DNS (black, solid line), LES with no closure term (blue, dots),
LES with the closure given in terms initial guess ν0 (red, dash-dot), and the LES
with the optimal eddy viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is
optimized for t = [0, T ] (bold lines), and here we show for up to t = 2T (outside of
the “training” interval are the thin plots).
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Figure 5.15: The normalized H2 seminorm E4(t) given in (5.5), for the optimal eddy
viscosity ν̌ from: (a) Case C in Table 5.1, and (b) Case D in Table 5.1. Shown is
when ũ(t, x) is set as: DNS (black, solid line), LES with no closure term (blue, dots),
LES with the closure given in terms initial guess ν0 (red, dash-dot), and the LES
with the optimal eddy viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is
optimized for t = [0, T ] (bold lines), and here we show for up to t = 2T (outside of
the “training” interval are the thin plots).
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Figure 5.16: The error at each observation point xi (i = 1, . . . , 8 shown from left to
right, top to bottom), for the optimal eddy viscosity ν̌ from Case C in Table 5.1.
Shown is when ũ(t, x) is set as: LES with no closure term (blue, dots), LES with
the closure given in terms initial guess ν0 (red, dash-dot), and the LES with the
optimal eddy viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is optimized
for t = [0, T ] (bold lines), and here we show for up to t = 2T (outside of the “training”
interval are the thin plots).
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Figure 5.17: The error at each observation point xi (i = 1, . . . , 8 shown from left to
right, top to bottom), for the optimal eddy viscosity ν̌ from Case D in Table 5.1.
Shown is when ũ(t, x) is set as: LES with no closure term (blue, dots), LES with
the closure given in terms initial guess ν0 (red, dash-dot), and the LES with the
optimal eddy viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is optimized
for t = [0, T ] (bold lines), and here we show for up to t = 2T (outside of the “training”
interval are the thin plots).

72



M.Sc. Thesis – Pritpal Matharu McMaster University – Mathematics and Statistics

Figure 5.18: Plot of the solutions in physical space, for the optimal eddy viscosity ν̌
from Case C in Table 5.1, at particular points in time: (a) t = 15 × 10−4, (b) t =
30× 10−4, (c) t = 45× 10−4, and (d) t = 60× 10−4. Shown is when ũ(t, x) is set as:
DNS (black, solid line), LES with no closure term (blue, dots), LES with the closure
given in terms initial guess ν0 (red, dash-dot), and the LES with the optimal eddy
viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is optimized for t = [0, T ]
(bold lines, (a) and (b)), and here we show for up to t = 2T (outside of the “training”
interval are the thin plots, (c) and (d)).
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Figure 5.19: Plot of the solutions in physical space, for the optimal eddy viscosity ν̌
from Case D in Table 5.1, at particular points in time: (a) t = 15 × 10−4, (b) t =
30× 10−4, (c) t = 45× 10−4, and (d) t = 60× 10−4. Shown is when ũ(t, x) is set as:
DNS (black, solid line), LES with no closure term (blue, dots), LES with the closure
given in terms initial guess ν0 (red, dash-dot), and the LES with the optimal eddy
viscosity ν̌ (yellow, dashed). The optimal eddy viscosity is optimized for t = [0, T ]
(bold lines, (a) and (b)), and here we show for up to t = 2T (outside of the “training”
interval are the thin plots, (c) and (d)).
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Chapter 6

Discussion

In this investigation, we determined an optimal eddy viscosity closure in the general

form as the Smagorinsky model. From the results shown in Chapter 5, we were able

to construct various eddy viscosities that locally minimize the cost functional, by

simply modifying the Sobolev length scale parameters to control the smoothness of

the eddy viscosity. In particular, we explored two good sets of Sobolev parameters

denoted Case C and Case D in Table 5.1. As shown in Figure 5.9, we can see that

Case C produces a smooth eddy viscosity, where as Case D produces a less smooth

eddy viscosity. So, we shall denote these as the “smooth” eddy viscosity and the

“rough” eddy viscosity, respectively. From the values of the cost functional, shown

in Figure 5.8, the rough eddy viscosity minimizes the cost functional better than the

other eddy viscosities. Observing the intrinsic dynamics of the LES solutions using

the smooth eddy viscosity and the rough eddy viscosity, shown in Figures 5.10(a) and

5.10(b) respectively, we can see the two solution fields contain different dynamics.
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In the space-time contour plot in Figure 5.10(b), we can see the solution contours

merging and separating. We also see these interactions in the DNS contour plot given

in Figure 5.5. These characteristic “events” occur beyond the “training” window,

and the rough eddy viscosity attempts to encompass these characteristics.

Considering the first diagnostics quantity (5.1) to be a cosine of the “angle”, we can

see in Figure 5.11(a) and 5.11(b) that the DNS, our “exact” solution, is equal to 1

for all time as should be expected. In both Figure 5.11(a) and 5.11(b), the optimal

eddy viscosities perform better than the LES with no closure and the LES with the

closure given in terms initial guess ν0. It should be noted that once the value of

(5.1) drops to 0, this signals that the functions w and ũ have become orthogonal.

Figure 5.11(a) shows that the smooth eddy viscosity attains orthogonality shortly

after the “training” window. Where-as, the rough eddy viscosity does not become

orthogonal for a longer interval.

The second diagnostics quantity (5.2) in Figure 5.12(a) and 5.12(b), also shows that

the LES solutions obtained with the optimal eddy viscosities are closer to the DNS

compared to the LES with no closure and the LES with the closure given in terms

initial guess ν0. However, looking at the kinetic energy (5.3), enstrophy (5.4), and

H2 seminorm (5.5) (Figure 5.13(a), 5.14(a), and 5.15(a) respectively for the smooth

eddy viscosity and Figure 5.13(b), 5.14(b), and 5.15(b) respectively for the rough

eddy viscosity) the figures show that the energy in the system is comparable to the

Smagorinsky initial guess ν0. Due to the lack of sufficient dissipation in the system,

it is shown that LES with no closure term in general has more energy than the DNS.

Both LES with closure terms predominantly have less energy in the system than the
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DNS. This indicates that the closure terms may be too dissipative. We shall also

note that both the smooth and the rough eddy viscosity in Figure 5.9 occasionally

attains negative values, which implies that they are not strictly dissipative but also

add energy into the system for certain values of
(
∂ũ
∂x

)2
. In addition, the optimal eddy

viscosities typically do not equal zero when velocity gradients equal zero but it does

vanish for certain other values.

In Figures 5.16 and 5.17, the error (5.13) at the observation points (5.11) is much

less that the LES with no closure and the initial guess ν0. As well in Figures 5.18 and

5.19, we can see in the training interval the optimal eddy viscosities generally capture

the behaviour of the DNS. Outside the training interval, as the solutions begin to

diverge, the optimal eddy viscosity still able to produce the general behaviour of the

DNS.
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Chapter 7

Conclusion

In this study, we developed a mathematically rigorous approach for computationally

constructing an optimal eddy viscosity closure based on the Smagorinsky model, for

LES. To determine this optimal eddy viscosity, a PDE-constraint optimization prob-

lem and the use of a adjoint-based method was used to formulate a gradient of the

state-dependent eddy viscosity. The optimal functional form of the eddy viscosity

was determined in a very general (continuous) setting, then numerically solved, hence

we used an “optimize then discretize” approach to determine the eddy viscosity. We

also showed that a certain amount of regularity was required for the eddy viscosity,

so a suitably smooth gradient was solved by using Sobolev gradients rather than a

traditional L2 gradient.

Multiple optimal eddy viscosities were obtained, varying due to the smoothing pa-

rameters applied to the Sobolev gradient. A smooth optimal eddy viscosity was

found, which had significantly reduced the value of the cost functional. A smaller
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value of the cost functional was obtained when using a less smooth eddy viscosity.

This rough eddy viscosity was shown to better encompass the intrinsic behaviour

of the flow field. It was shown that the optimal eddy viscosities out-performed the

original Smagorinsky type initial guess for the eddy viscosity.

Future work that will be explored is to use this method for longer time intervals, as in

this investigation we were limited to a short time interval due to the rapid divergence

of the solutions. We are also interested investigating different observation operators,

in particular observing points in Fourier space rather than in physical space. Incor-

porating more powerful tools used in calculus of variations, in order to improve our

local optimizer will be something that will explored as well. Naturally, we also wish

to extend this work to Navier-Stokes, which acted as the main motivation for this

project. A similar approach will be attempted, using a Smagorinsky model with a

state dependent eddy viscosity.
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