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� We are not always able to analytically find a solution to differential equations, and/or we must
computationally solve a differential equation. To overcome this, we must numerically solve
the differential equation and resort to numerical methods to help us approximate solutions

� Numerical approximations are very common in practice, and several online solvers rely on
numerically computed differential equations

1 Simple Numerical Method

Suppose we have a first-order initial value problem{
dy
dx = f(x, y),

y(x0) = y0.
(1)

We can use tangent lines to approximate the solution to Equation (1)! We shall do this, by
remembering that we can approximate a derivative by

dy

dx
≈ y(x)− y(x0)

x− x0
, (2)

and we can use equation of the tangent line

y(x) = y0 +
dy

dx
(x− x0).

Noting that dy
dx = f(x, y) in Equation (1), we have

y(x) = y0 + f(x0, y0) (x− x0). (3)

It is required that x − x0 be reasonably small, in order to obtain a good approximation of our
derivative in Equation (2). Denoting h = x − x0, we can consider this as a “step-size” from our
initial value x0. Thus, using our initial condition y(x0) = y0 and Equation (3), we can approximate
the solution for y1 = y(x0 + h) by solving

y1 = y0 + f(x0, y0)h.
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Denoting x1 = x0 + h, we repeat this process, to find y2 = y(x1 + h) = y(x0 + 2h) by solving

y2 = y1 + f(x1, y1)h.

This can be defined as a general recursive formula

yn+1 = yn + h f(xn, yn), (4)

where xn = x0 + nh, n = 0, 1, 2, . . . Using this algorithm of utilizing successive tangent line
approximation to find y1, y2, . . . is known as Euler’s Method.

2 Example of Euler’s Method

Use Euler’s Method to obtain an approximation of y(0.8) for{
y′ = y2 + x2,

y(0) = 1,
(5)

with a step-size of 0.1.

Solution Given in the problem (5), we are told that h = 0.1, and we wish to compute the
solution up to x = 0.8. Thus, we have x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3, . . . x7 = 0.7, x8 = 0.8.
Using Euler’s Method: yn+1 = yn + h f(xn, yn)

y(0) = y0 = 1

y1 = y0 + h f(x0, y0)

= y0 + h (y20 + x2
0)

= 1 + (0.1) · (12 + 02)

y(0.1) = y1 = 1.1

y2 = y1 + h f(x1, y1)

= y1 + h (y21 + x2
1)

= 1.1 + (0.1) · (1.12 + 0.12)

y(0.2) = y2 = 1.222

y(0.3) = y3 = 1.3753284

y(0.4) = y4 = 1.573481220784657

y(0.5) = y5 = 1.837065536000854

y(0.6) = y6 = 2.199546514357064

y(0.7) = y7 = 2.719347001239096

y(0.8) = y8 = 3.507831812553902

3 Refinements

Euler’s Method only uses information about the derivative at the “left endpoint” of our interval.
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� Instead we can take an average over the interval, where we take a trial step across the interval
first using Euler’s Method, then use the trial step to improve our approximation. This is
called the Improved Euler’s Method

ỹn+1 = yn + h f(xn, yn) (trial Euler step)

yn+1 = yn +
1

2
h [f(xn, yn) + f(xn+1, ỹn+1)] (true step)

� We can further expand this idea, to improve our approximation. Common and practical
methods are Runge-Kutta methods, which use judiciously chosen steps and weights:

k1 = h f (xn, yn)

k2 = h f

(
xn +

1

2
h, yn +

1

2
k1

)
k3 = h f

(
xn +

1

2
h, yn +

1

2
k2

)
k4 = h f (xn + h, yn + k3)

yn+1 = yn +
1

6
[k1 + 2 k2 + 2 k3 + k4]

The Runge-Kutta method shown above is the RK4 method, which is the “workhorse” for
many differential equations solvers

4 Errors in Approximations

When using an approximation (such as a numerical method), we must remember it is just that,
an approximation. The approximation can be improved upon by refining the step-size, however it
should be noted that when using computers we must be careful not to use too small of a step-size
(one should be aware of numerical precision and round-off errors).

A natural question that arises when obtaining numerical solutions is: What is my error to the
true solution? It is important to know the accuracy of the numerical method you are using.
Local truncation error is the error that arises due to the fact that our discretized solution will
not be precisely equal to the continuous problem (also known as formula error or discretization
error). Furthermore, this error will occur at each time step and accumulate for each step! For
Euler’s method we can derive a formula for local truncation error, by using Taylor’s formula with
remainder. Let y(x) be a k + 1 differentiable function, on an open interval x ∈ I. Then, we can
represent this as a power series, and in particular a Taylor series

y(x) = y(a) + y′(a)
x− a

1!
+ . . . + y(k)(a)

(x− a)k

k!
+ y(k+1)(c)

(x− a)k+1

(k + 1)!
,
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where a, c ∈ I, and c is a point between a and x. Notice, if we set k = 1, a = xn, and x = xn+1,
then

y(xn+1) = y(xn) + y′(xn)
h

1!
+ y(2)(c)

h2

2!
,

y(xn+1) = yn + h f(xn, yn) + y(2)(c)
h2

2!
,

y(xn+1)− yn+1 = y(2)(c)
h2

2!
.

We usually cannot determine the error exactly, because the value of c is usually unknown, however
we obtain an upper bound of the error by

max
xn<x<xn+1

∣∣∣y(2)(x)
∣∣∣ h2

2!
.

So, Euler’s Method has a local truncation error of O(h2).

� Euler’s Method’s global truncation error is first-order accurate, so the error are O(h).
This is good for an introduction to numerical methods, but not practical for use (converges
too slowly to true solution). Similarly, Improved Euler’s Method is second-order accurate,
O(h2)

� There are higher order methods can be used, however this comes at the higher computational
cost to solve differential equations

� The RK4 method is a good balance between low computational cost, while achieving a fourth-
order globally accurate method.

� Runge-Kutta methods are also typically numerically stable for several differential equations
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To illustrate order of accuracy, we numerically solve the logistic equation{
u′ = u (1− u),

u(0) = 2,
(6)

which has solution u(t) = 2
2−e−t . The solution to Equation (6) is shown in Figure 1, with h = 0.1.

We also show the convergence to the true solution in Figure 2 at T = 2.

Figure 1: Solution to the logistic initial value problem Equation (6), using h = 0.1. Shown is
the solution found: analytically (black, solid line), using Euler’s method (blue, dashed-dot line),
Improved Euler’s method (red, solid-dotted line), and RK4 method (yellow, dashed line)
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Figure 2: Convergence of the approximated solutions to the analytic solution of Equation (6) at
T = 2, as step-size h is refined. Shown is the solution given by Euler’s method (blue, dashed-dot
line), Improved Euler’s method (red, solid-dotted line), and RK4 method (yellow, dashed line).

6



In addition, there are several numerical methods that can be used to solve several problems,
and some of them work better than others, depending on the problem! To show this, we can solve
this IVP {

y′ = |x|3,
y(−1) = 0,

(7)

and we show the convergence of the solution at x = 1 in Figure 3. In Figure 4 we show what
the grid points are of an example for an equispaced and non-equispaced numerical method.

Figure 3: Convergence of the numerical solutions to the true solution of the IVP given in Equa-
tion (7) at T = 1, as step-size h is refined. Shown is the solution given by Euler’s method (blue,
dashed-dot line) and RK4 method (yellow, dashed line) with both use Equispaced grids, and a
method using a Non-Equispaced grid (purple, solid-star line).
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Figure 4: Example of grid using 16 equispaced points (blue, circles) vs using 16 non-equispaced
points (purple, stars).
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Textbook Problems

Zill:
Sec 4.7 #1, 3
Sec 9.1 #9, 17, 21
Sec 9.2 #10, 13

Trench:
Sec 3.1 #1, 2, 3
Sec 3.2 #1, 2, 3
Sec 3.3 #1, 2, 3
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